

Delivery of sustainable supply of non-food biomass to support a resource-efficient Bioeconomy in Europe

S2Biom summer school, Athens, Greece, 17-20 May, 2016

Case Study: Äänekoski Region in Finland

Presenter

Senior Scientist Kristian Melin

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°608622. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

The Finnish Case Study

- We study utilisation of forest Biomass in the Äänekoski region (red mark in the map)
 - A smaller Pulp mill in Äänekoski is being shut down and a new Bioproduct mill (not using any fossil fuels) will be in operation in 2017.
 - The Impact on sustainability and harvest residues availability in the region is not well known and will therefore be studied in the S2Biom Finnish case study

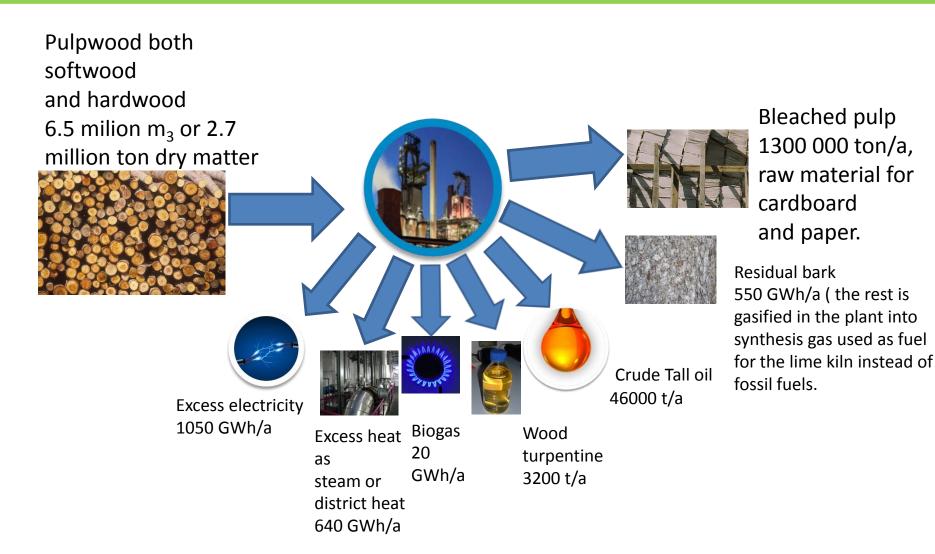
What is studied in S2Biom?

- The Sustainability impact of the new Bioproduct Mill in Äänekoski is studied
 - Especially promising logistical concepts and harvesting technologies, which could significantly increase resource mobilization efficiency
 - integrated harvesting
 - whole tree harvesting and increased loading capacity of trucks to 94 tonnes
 - The following impacts for increased demand for pulpwood are studied:
 - Impact on stand age-class distribution
 - Increased supply of harvesting residues
 - Impact for fuel wood availability for CHP plant in the region_

- The data of the products and raw material for the Bioproduct mill is collected from public data.
- The data of forest biomass availability from biomass comes from LUKE (Natural Resources Institute in Finland)
- VTT will compute energy demand of the region based on its power plant database.

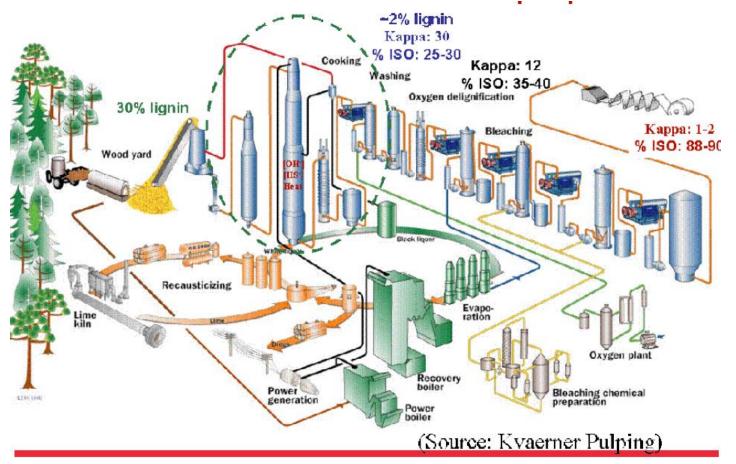
- Presently we have collected the needed data for modelling biomass availability in the region (potential and use), however we do not yet have results from modelling.
 - Since this data is needed for a more quantitative analysis I will focus here more on based on qualitative results and describe the cases (Bioproduct mill and utilisation of Forest Biomass in the region.

The Present Situation in Äänekoski


Pulpwood 530 000 ton air dried bleached both softwood pulp (10 % moisture content per and hardwood annum. Pulp is main raw material 2.3 milion m₃ for cardboard, paper etc. **Excess** renewable electricity, with an electricity self- sufficiency Residual of 131 % bark Excess Crude turpentine haet tall oil

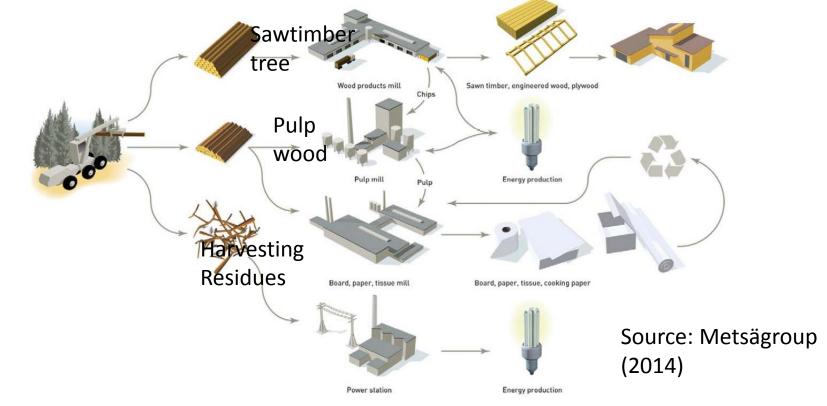
S2Biom

The New Bioproduct Mill

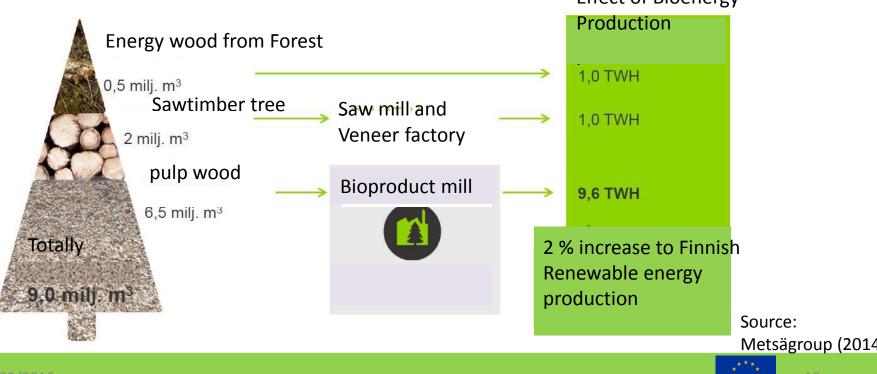


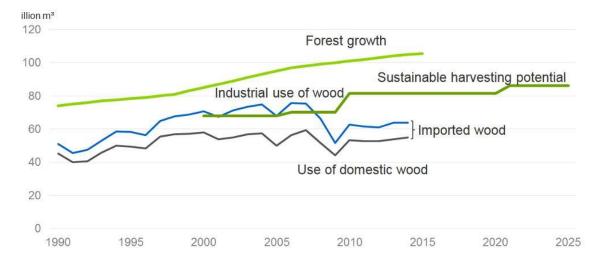
The Pulp Making Process in More Detail

 The Bioproduct mill employs the common Kraft Process illustrated in the figure below



The Value Chain of Forest to Products


- in the figure below the typical value chain in Finland of forest based products are illustrated.
- the most valuable part sawn wood is converted into timber,
- smaller diameter roundwood (pulpwood) is converted into pulp
- harvesting residues and bark are used for energy or biofuel production


• Energy wood is usually obtained as thinnings of forest or by product in harvest of the whole forest, therefore when more forest is harvested more energy wood is obtained.

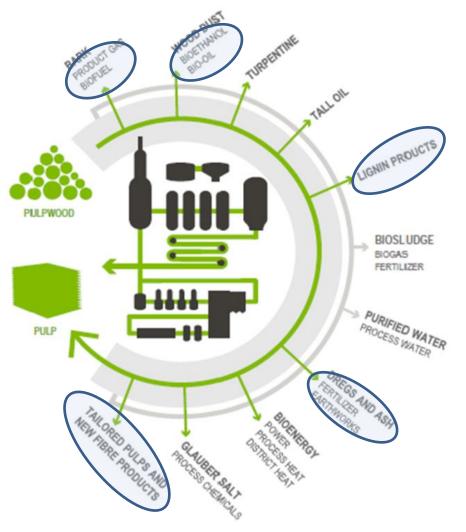
Biomass Availability Prediction on a National Level

- The Studies conducted shows that there will be enough Forest Biomass 2030 in Finland.
- However the planned investment are using pulpwood not saw timber tree.
- The energy wood availability depends on thinnings and sawn wood and pulp wood use.

Source: Natural Resources Institute Finland 2015

• The harvest are will significantly increase (see below)

Category	Existing mill	Bioproduct mill
Investment size	NA	EUR 1.2 billion
Pulp production	0.5 mill. t	1.3 mill. t
Resource demand	2.4 mill. m³⁄a	6.5 mill. m³∕a
Truck supplied	1 440 000 m³⁄a	4 001 000 m³⁄a
Railway supplied	621 000 m³⁄a	1 451 000 m³⁄a
Number of trucks	103/day	260/day
Number of trains	1-2/day	4/day
Employment	1,000	2,500
Electrical self sufficiency	135%	240%
Truck transport distance	121 km	195 km
Imports	5%	NA
PEFC	93%	NA


Source: Šimunović (2015) EFI

Possible Additional Future Products from the Bioproduct Mill Sidestreams

 besides planned products additional new products (shown in Figure) could be produced in new additional production units for the sidestreams.

Possible Use of S2Biom Results S2Biom

- Plan different policies to Enhance Biomass use for energy but avoid energy use of more valuable pulpwood.
- Evaluate how much potential is left to produce biofuels and Bioenergy from energy wood
- Evaluate Impact of other planned investments in Finland for Pulp wood availability.

- Petteri Kangas, Screening the new process oncepts for pulp mill retrofits with varying capacity constraints, Tappi Journal 15 vol 4, 2016
- Petteri Kangas, Sakari Kaijaluoto, and Marjo Määttänen, Evaluation of future pulp mill concepts – Reference, model of a modern Nordic kraft pulp mill, Nordic Pulp & Paper Research Journal, Vol 29 no (4) 2014
- <u>http://bioproductmill.com/</u> accessed 13.05.2016

Thank you for your attention !!

Contact Information Kristian.Melin@vtt.fi +358 40 357 5489

http://www.vttresearch.com/ VTT Technical Research Centre of Finland Ltd is the leading research and technology company in the Nordic countries.

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°608622.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.