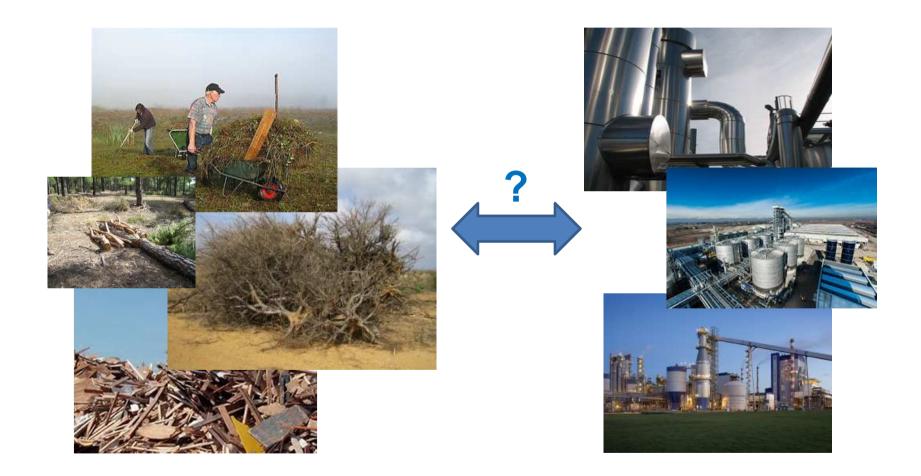


S2BIOM WP2: Biomass & Conversion Technology Matching

Douwe van den Berg, BTG Ispra, September 30, 2015



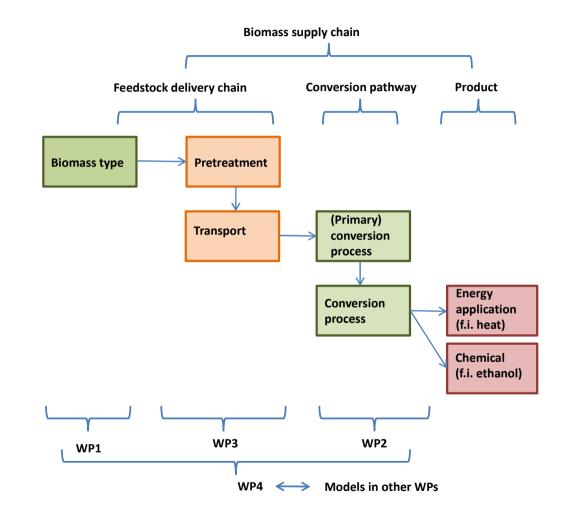
This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 608622. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

Matching Biomass & Technology

Introduction WP2 - in short

- WP2.1: selection and characterization of conversion technologies (Lead BTG).
- WP2.2: linking quality of biomass with input requirements conversion technology (Lead VTT, DLO).
- WP2.3: model optimal match between biomass type and conversion technology, for instance to achieve maximum level of biomass utilization in the EU28 (Lead BTG).
- Partners involved: BTG (Lead), DLO, VTT, ECN, FNR, IINAS, SYNCOM.

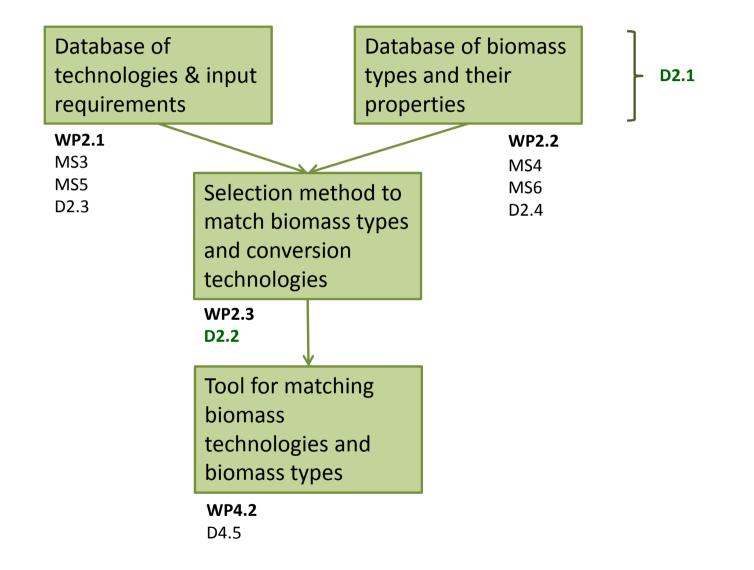
Interaction with other WPs



WP1: definition & properties of biomass classes.

WP3: continuous collaboration. Next step: modelling interaction between biomass resource, pretreatment, logistics and conversion technology.

WP4: setup of database structure for biomass properties after harvest at roadside


WP4: development of tool for viewing and matching biomass with resources

btg (

Introduction WP2 – in short

btg 🧲

Task 2.1 Technology database

Database provides quality demand per conversion technology.

Biomass	chain data / Conversio	n technologies			My Sites	0 0	Tijs Lammens	
52	Syngas platform	Fluidised bed gasification for FT- fuels production	Syngas to FT-diesel	Power, Heat, FT- diesel			Mozaffarian	
44	Syngas platform	Indirect gasification for SNG production	Producer gas to biomethane	Methane		Power	Hamid Mozaffarian	<u>c</u>
41	Syngas platform	Fluidised bed gasification for methanol production	Syngas to methanol	Heat, Methanol		Power	Hamid Mozaffarian	Ĝ
40	Fast pyrolysis	Pyrolysis and hydrogenation for diesel fuel	Pyrolysis oil diesel	Pyrolysis diesel		Power	Rik te Raa	ġ
39	Fast pyrolysis	Pyrolysis plus boiler for heat and steam	Pyrolysis oil to steam	Heat		Natural gas	Rik te Raa	ġ
38	Fast pyrolysis	Pyrolysis plus boiler for heat and steam	Pyrolysis oil to heat	Heat		Natural gas	Rik te Raa	¢
35	Anaerobic digestion	Plug flow digester	Dry Batch Digestion (MSW)	Power, Biogas, Methane		Power, Heat (useful, not process steam)	Wolter Elbersen	ġ
34	Direct combustion of solid biomass	Domestic residential batch fired stoves for heat	Batch stove for heat	Heat			Janne Kärki	ġ
33	Direct combustion of	Domestic pellet burners for heat	Pellet boiler for heat	Heat			Janne Kärki	ġ

28/09/2015

Task 2.1 Technology database

Capacity of outputs (typical values)	TECHNICAL	PROPERTIES			
Power (MWe) 0.53					
Conversion efficiencies: net returns electricity(GJ/GJ biomass ing	put) typical: 0.0221	min: ma	ax: typical in 2020: 0.02	typical in 2030: 0.019	
	, ,,				
Heat (MWth) 6.24					
Conversion efficiencies: net returns usable heat(GJ/GJ biomass	typical: 0.26	min: ma	ax: typical in 2020: 0.24	typical in 2030: 0.22	
input)					
Pyrolysis oil (m3/hour) 2.775 LHV (GJ / m ³) 19.2					
Pyrolysis oil (m3/hour) 2.775 LHV (GJ / m ³) 19.2 Conversion efficiencies: net returns fuel(GJ/GJ biomass input)	typical: 0.62	min: ma	ax: typical in 2020: 0.65	typical in 2030: 0.68	
conversion entriencies, ner terrins ruer(55/55 biomass inpur)	typical. 0.02	11111. 111e	ax. typical in 2020, 0.00	typicar in 2000, 0.00	
Data sources used to define conversion efficiencies in 2014:		Data sources used to	define conversion efficiencies	s in 2020:	
External inputs (not generated by the biomass in the conversion - No external inputs	on process)	Data sources used to a	define conversion efficiencies	s in 2030:	
Indianticas associations becaudidate	Ne				
ndication: experience based data	No	General data sources	for technical properties:		
Number of possible full load hours per year (hours)	8000				
Number of typical full load hours per year (hours)	7000				
	7000 25				
	25				
Typical Lifetime of Equipment (years)		SPECIFICATIONS			
Typical Lifetime of Equipment (years) Biomass input, common for the technology used:	25	SPECIFICATIONS			
Typical Lifetime of Equipment (years) Biomass input, common for the technology used:	25	SPECIFICATIONS			
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common:	25	SPECIFICATIONS	Optional attrib	utes	
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips	25 BIOMASS INPUT	Net caloric value	Optional attrib	(MJ/kg) min 15	max 17
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30:	25 BIOMASS INPUT < 30 %	Net caloric value Gross caloric value		(MJ/kg) min 15 (MJ/kg) min	max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: Moisture content (% wet basis) typica	25 BIOMASS INPUT < 30 % al 10 max 10	Net caloric value Gross caloric value Biogas yield	(m³ gas/	(MJ/kg) min 15 (MJ/kg) min ton dry biomass)	max % methane
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: Moisture content (% wet basis) typica Minimal bulk density	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400	Net caloric value Gross caloric value Biogas yield Cellulose content	(m³ gas/ (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min	max % methane max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: Moisture content (% wet basis) typica Minimal bulk density Maximum ash content	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content	(m³ gas/ (g/k) (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min	max % methane max max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: Moisture content (% wet basis) typica Minimal bulk density Minimal ash melting point (= initial deformation temperature)	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (°C) 1000	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content	(m³ gas/ (g/k (g/k (g/k	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min g dry matter) min	max % methane max max max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: - Moisture content (% wet basis) typica Minimal abulk density Maximum ash content Minimal ash metling point (= initial deformation temperature) Volatile matter (only for thermally trated material, torrefied or steam	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (°C) 1000	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content Crude fibre content	(m ³ gas) (g/k (g/k (g/k (g/k	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min g dry matter) min g dry matter) min	max % methane max max max max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: - Moisture content (% wet basis) typica Minimal abulk density Maximum ash content Minimal ash metling point (= initial deformation temperature) Volatile matter (only for thermally trated material, torrefied or steam	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (°C) 1000	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content Crude fibre content Starch content	(m ³ gas/ (g/k) (g/k) (g/k) (g/k) (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min g dry matter) min g dry matter) min g dry matter) min	max % methane max max max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: · Moisture content (% wet basis) typical Minimal abulk density Maximum ash content Minimal ash melting point (= initial deformation temperature) Volatile matter (only for thermally trated material, torrefied or steam explosed)	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (°C) 1000	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content Crude fibre content Starch content Sugar content	(m ³ gas) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min	max % methane max max max max max max
Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: Moisture content (% wet basis) typics Minimal bulk density (% wet basis) typics Maximum ash content (% minimal ash melting point (= initial deformation temperature) Volatile matter (only for thermally trated material, torrefied or steam explosed) (% minimal ash melting point (= initial deformation temperature)	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (*C) 1000 a (VM%)	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content Crude fibre content Starch content Sugar content Fat content	(m³ gas) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min	max % methane max max max max max max max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: - Moisture content (% wet basis) typica Minimal ash melting point (= initial deformation temperature) Volatile matter (only for thermally trated material, torrefied or steam explosed) Maximum allowable contents	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (°C) 1000	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content Crude fibre content Starch content Sugar content Fat content Protein content	(m ³ gas) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min	max % methane max max max max max max max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: - Moisture content (% wet basis) typica Minimal ash melling point (= initial deformation temperature) Volatile matter (only for thermally trated material, torrefied or steam explosed) Maximum allowable contents	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (*C) 1000 a (VM%)	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content Crude fibre content Starch content Sugar content Fat content	(m ³ gas) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min	max % methane max max max max max max max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: - Moisture content (% wet basis) typica Minimal ash melting point (= initial deformation temperature) Volatile matter (only for thermally trated material, torrefied or steam explosed) Maximum allowable contents	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (*C) 1000 a (VM%)	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content Crude fibre content Starch content Sugar content Fat content Protein content Acetyl group content	(m ³ gas) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min	max % methane max max max max max max max max
Typical Lifetime of Equipment (years) Biomass input, common for the technology used: Biomass input, technically possible but not common: Traded form Wood chips Dimensions P16S: 3,15 mm < P < 16 mm Fine fraction F30: - Moisture content (% wet basis) typica Minimal ash melling point (= initial deformation temperature) Volatile matter (only for thermally trated material, torrefied or steam explosed) Maximum allowable contents	25 BIOMASS INPUT < 30 % al 10 max 10 (kg/m ³ , wet basis) 400 (% dry basis) 1 (*C) 1000 a (VM%) hlorine, CI (wt%, dry) 0.05	Net caloric value Gross caloric value Biogas yield Cellulose content Hemicellulose content Lignin content Crude fibre content Starch content Sugar content Fat content Protein content Acetyl group content	(m ³ gas) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k) (g/k)	(MJ/kg) min 15 (MJ/kg) min ton dry biomass) g dry matter) min g dry matter) min	max % methane max max max max max max max max

- Status: Nearly finished, little further input needed.
- Ready to test with matching tool for:

Fast Pyrolysis, Gasification, Combustion, Anaerobic Digestion, Fermentation.

btg

Task 2.2 Biomass database

Database set-up to classify biomass types according to suitability indicators for the main lignocellulose conversion options.

	a			1 m															_
	Origin			1. Forestry										2. Agriculture on a	rable land & grass lan	d			_
	11Primary forestry production								1.2 Primary forestry residues			2.1Primary production of lignocellulosic biomass crops							
	Category – Level 2		1.1.1Stemwood from thinnings and final fellings			1.1.2 Stem and crown biomass from early thinnings (whole tree)		rly 1.2.1Logging residues from final fellings (tops and branches mainly)		1.2.2 Stumps from final fellings		2.1.1. Energy grasses, annual & perennial crops							
	Category – Level	3		from final fellings originating from	1.1.1.2 Stemwood from final fellings originating from conifer trees	1.1.1.3 Stemwood from thinnings originating from broadleaf trees	1.1.1.4 Stemwood from thinnings originating from conifer trees	crown biomass	1.1.2.2 Stem and crown biomass from early thinnings originating from conifer trees	1.2.1.1Logging residues from final s fellings originating from broadleaf trees	1.2.1.2 Logging residues from final fellings originating from conifer trees	1.2.2.1 Stumps from final fellings originating from broadleaf trees	12.2.2 Stumps from final fellings originating from conifer trees	2.1.1.1Sweet and biomass sorghum (Annual grasses)		2.1.1.3 Switchgrass (Perennial grass)			2.1 Ca (Pe
	Considered by S2	BIOM		YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YE
	Responsible WP1 par	rtaer		Supply - EFI(Joanne Fitz	Supply - EFI(Joanne Fitz	ze Supply - EFI(Joanne Fit:	zç Supply - EFI(Joanne Fit:	supply - EFI(Joanne Fitz	c Supply - EFI(Joanne Fit:	ze Supply - EFI(Joanne Fitz	Supply - EFI(Joanne Fitzger	ra Supply - EFI(Joanne Fitz	e Supply - EFI(Joanne Fitz	UniBo/DLO(Jacqueline	R UniBo/DLO(Jacqueline	R UniBo/DLO(Jacqueline P	R UniBo/DLO(Jacqueline I	R UniBo/DLO(Jacqueline	R UniE
	Responsible WP2 par	rtner		VTT (Eija Alakangas))	VTT (Eija Alakangas)	VTT (Eija Alakangas)	VTT (Eija Alakangas)	VTT (Eija Alakangas)	VTT (Eija Alakangas)	VTT (Eija Alakangas)	VTT (Eija Alakangas)	VTT (Eija Alakangas)	VTT (Eija Alakangas)	DLO (Wolter Elbersen)	DLO (Wolter Elbersen)	DLO (Wolter Elbersen)	DLO (Wolter Elbersen)	DLO (Wolter Elbersen)	DLO
	Biomass similar to					See 1.1.1.1	See 1.1.1.2												
2	Net calorific value as received	MJ/kg	Typical	10.4	8.4	11.3	5 11.0	5 11.6	5 11.3	7 10.2	8.4	4 11.1	11.1						
			Minimum	7.7	7	7 10.3	2 10.4	10.2	2 10.0	6 7.9	7	7 10.8	8 10.8						
			Maximum	12.7	13	3 13.9	9 13.9) 13.9) 14	4 11.8	12.5	5 12.7	12.7						
3	Gross Calorific value	MJ/kg	Typical	20.3	20.6	20.3	3 20.5	5 20.5	5 20.6	6 19.7									
	- Tubo		Minimum	19.1															
			Maximum	20.5	21.2	2 20.6	5 20.6	5 20.6	6 20.8	8 20									
4	Ash content	w-% dry	Typical	0.7	0.5	5 0.9	9.0	3 1	1 0.9	9 4	. 3	3 6	6 6						
			Minimum	0.3	0.3	3 0.3	7 0.1	7 1	1 0.9	9 2	1	1 4	1 4						
			Maximum	1	0.7	7	1 1.3	3 1.3	3 1.6	6 10	10	0 20) 20						
5	Ash melting behavior (DT)	°C	Typical	1320															
			Minimum	1200															
			Maximum	1370															
6	Content of lignin	w-% dry	Typical	23.4	28.6	3 23.4	4 28.6	23.4	28.0	6			1						-
	(see sheet 4)		Minimum	20.8	26.8	3 20.8	3 26.8	3 20.8					•						1
			Maximum	26.1															
7	Content of cellulose	w-% dry	Typical	43	38.7	7 4	3 38.7	7 43	3 38.1	7									
			Minimum	38.8	33	3 38.0	3	38.8	3.	3									
			Maximum	51.3	41.7	7 51.3	3 41.1	7 51.3	8 41.	7									
в	Content of hemicellulose	w-% dry	Typical	29.8	29.2	2 29.8	3 29.3	2 29.8	3 29.3	2									
			Minimum	21.1															

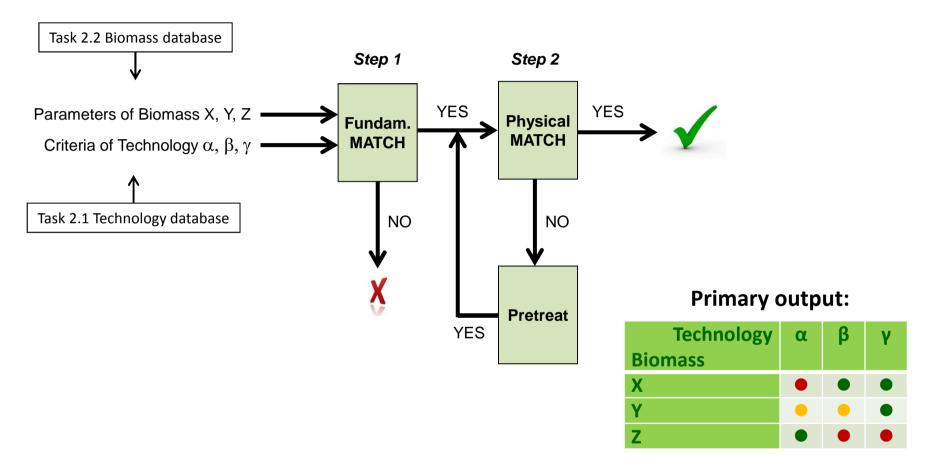
btg

- Status: Awaiting a lot of input. Ready to test for wood.

Task 2.3 Selection method

- All biomass types and conversion technologies will be classified according to the suitability classes (1-4).
- A match occurs if for example biomass of class 2 is converted by a technology that can handle class 2 or higher.
- All suitability classes need to match, e.g. corrosion, ash melting point, total ash content and nitrogen content.
- This principle will be refined and serve as basis for development of the matching tool.
- Status: Deliverable D2.2 was submitted in April 2015.

WP 2 – Status overview



Task	Responsible	Deadline	Status
2.1: Technology requirements	BTG		
MS3. Draft technology database		June '14	•
MS5. Extended technology database		July '15	•
D2.3. Final technology database		Feb '16	•
2.2: Biomass characteristics	VTT+DLO+Uni-Fr		
D2.1. Method for biomass characterization		March '15	•
MS4. Draft biomass database		June '14	•
MS6. Extended biomass database		July '15	•
D2.4. Final biomass database		Feb '16	•
2.3: Biomass and technology matching	BTG		
D2.2. Selection method for matching		March '15	•

btg

Matching Tool

Green: Match between biomass and technology.
Orange: Match after modification of physical biomass characteristics.
Red: No match between biomass and technology.

btg (

Task	Ready	Responsible
MS6. Extended biomass database	Mid-Oct 2015	VTT, DLO
Implement first version of the tool	Nov 2015	DLO, BTG
Tool testing and feedback	Jan 2016	WP9
D2.3. Final technology database	Feb 2016	BTG
D2.4. Final biomass database	Feb 2016	DLO
D4.5. Final matching tool	May 2016	DLO

Thanks for your attention!

Douwe van den Berg

VandenBerg@btgworld.com +31 53 486 1186 www.btgworld.com

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 608622. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.