

Lignocellulosic biomass as feedstock for biobased chemicals & materials in Europe

A quantitative estimate of biomass demand for 2020 and 2030

Hamid Mozaffarian (ECN)

Marc Londo (ECN)

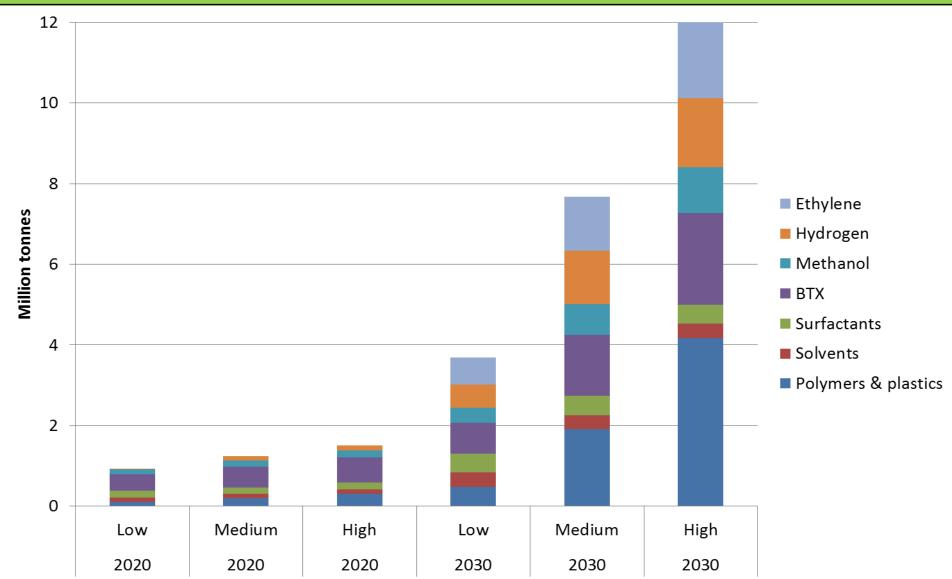
Key question WP7

- To what extent the additional biomass demand for chemicals and materials could be sufficiently significant to:
 - influence lignocellulosic biomass prices and
 - induce scarcity and competition issues with energy applications?

Focus

- Sectors that can create significant biomass demand (relatively bulky chemicals markets)
- Specialties and fine chemicals:
 - can have high added value => most relevant for a biorefinery business case
 - but their production will by definition not induce bulky amounts of biomass demand

PMCs of the market review



	Product	Market		
1	Heat	District heating		
2	Electricity	Power market		
3	Advanced Biofuels	Transport fuel		
4	C6 sugars	C6 chemistry: polymers & plastics, others		
5	C5 sugars	C5 chemistry: polymers & plastics, others		
6	Bio-methane	Grid, transport		
7	BTX	Petrochemical industry		
8	Methanol	Transport, chemical industry		
9	Hydrogen	Transport, (petro)chemical industry		
10	Ethylene	(petro)chemical industry		

Projected total lignocellulosic biomass demand for PMCs 4-10 exclusive biomethane PMC

Comparison demand (PJ) lignocellulosic biomass EU

	2013	2020	2030
PMCs 1-3 Consumption of domestic lignocellulosic biomass for EU28 + Western Balkans + MD + TR + UA	4,055	5,175	6,781
PMCs 4-10 exclusive biomethane PMC		15 - 26	63 - 206
	-	0.3 - 0.5%	1 - 3%

Conclusions

- Next to the demand for energy, lignocellulosic biomass demand for chemicals and materials can run into a few million tonnes by 2020, and more than ten million tonnes in 2030
- Uncertainties are substantial with respect to:
 - technologies that are to be further developed
 - supporting policies required
 - the future of (petro)chemical industry in EU
 - the oil price, being a strong factor affecting the prospects for biobased chemicals and materials

Recommendation

 As the review is indicative in many respects, both the review results and the outcomes of the integrated assessment for which they will be used (Tasks 7.3-5) should be subject to stakeholder consultation in WP10 of the project

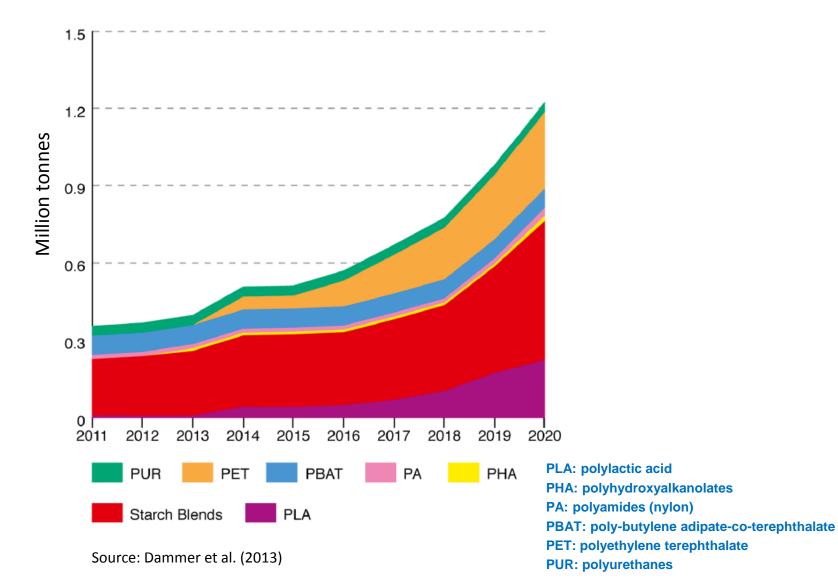
Approach

(hemi)cellulose and lignin (PMCs 4 & 5)

- Various studies specifically on:
 - biobased polymers & plastics
 - other materials such as lubricants, solvents and surfactants
- Literature data and expert estimates translated into a corresponding biomass demand

Biomethane, BTX, methanol, hydrogen, ethylene (PMCs 6-10)

- Available estimates of developments in fossil-based reference material
- Estimation of a range of possible biomass shares for 2020 & 2030, based on experts judgments and logical reasoning
- Translation into a corresponding biomass demand, using conversion technology information from WP2 and other sources



PMCs 4 & 5: Biobased polymers

& plastics projection for Europe

excluding cellulose acetate and thermosets

Estimated EU production volumes biobased polymers & plastics for 2020

- Starting point: 1 Mt biobased polymers & plastics in 2020 (15% global production)
- Weighted average share of biomass-based components of 50%
- Considering general uncertainties => a range around 0.5 Mt:
 12% resp. 18% of global biobased capacity
- By 2020 85% of polymers & plastics are non-ligno based and 15% lignocellulosic-based

Projections polymers & plastics for 2030

Growth rate biobased polymers & plastics	Share biomass- based components	Ratio non-ligno lignocellulose-based
--	------------------------------------	---

15%/a within Increased 2020-2030 from 50% to 70% 80% / 20%

High variant

10%/a within Medium variant Increased 2020-2030 from 50% to 60% 85% / 15%

10%/a within Low variant 50% 90% / 10% 2012-2030

of biobased chemicals (Mtonnes) \$2Biom					
of biobased chemicals (Mtonnes)					
2020	Polymers & plastics	Lubricants	Solvents	Surfactants	
High	0.6				
Medium	0.5	0.2	1.1	2.3	
Low	0.4				
		2008 cons.: total/biobased 5.2Mt/ 0.15 Mt (growth potential: 3.6 %/a)	2008 cons.: total/biobased 5.0 Mt / 0.63 Mt (growth potential: 4.8 %/a)	2008 cons. (total/biobased) 2.7 Mt / 1.52 Mt (growth potential: 3.5 %/a)	
		Biomass feedstocks (products)			
		Vegetable oils (derivatives)	Vegetable oils (esters) Sugars (lactate esters) Citrus oils (D-limonene)	Vegetable oils and sugars (derivatives)	
2030	Plastics	Lubricants	Solvents	Surfactants	
High	5.0				
Medium	2.7	0.3	1.8	3.2	

Low	1.3	
October 1s	^t 2015, Ispra, Italy	

2.7

Medium

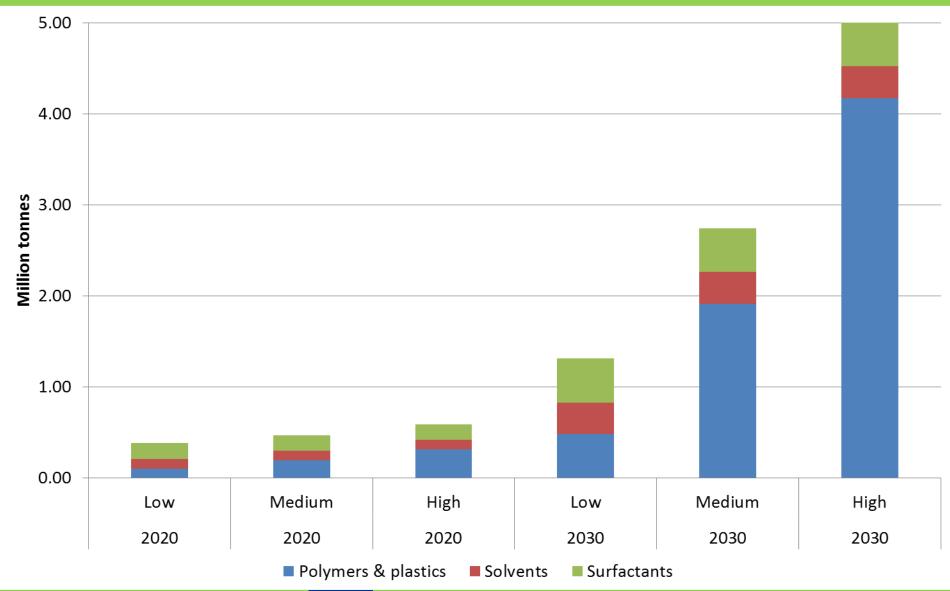
Additional assumptions biobased **lubricants, solvents & surfactants**

2020

- Solvents: 40% based on sugars, with 90% derived from sugar or starch crops and 10% from lignocellulosic feedstocks
- Surfactants: 30% based on sugars, with 90% derived from sugar or starch crops and 10% from lignocellulosic feedstocks

2030

- The growth rates for 2012-2020 were extended until 2030
- Solvents: 40% based on sugars, with 80% derived from sugar or starch crops and 20% from lignocellulosic feedstocks
- Surfactants: 30% based on sugars, with 80% derived from sugar or starch crops and 20% from lignocellulosic feedstocks


Assumptions feedstocks and conversion efficiencies

and conversion	CITICICITICICS
Subject	Assumption
Biomass	Lignocellulosic (dry matter content: 90%), 17 MJ/kg
Lignocellulosic biomass	 70% (hemi)cellulose (currently used as feedstock) 30% lignin (more complex resource/less biochemical pathways available today)
(hemi)cellulose hydrolysis	90% conversion efficiency to corresponding sugars
Sugars to product monomers	One overall conversion efficiency of 80%
Monomers to polymers	One overall conversion efficiency of 90%

Projected EU's lignocellulosic biomass demand for biobased polymers & plastics, solvents and surfactants

PMCs 6-10: biomethane, BTX,
methanol, hydrogen and ethylene

methanol, hydrogen and ethylene		
Product	Market	

Replaces fossil-based methane /NG: in heat and/or power applications, as

Biomethane

Methanol

Hydrogen

Ethylene

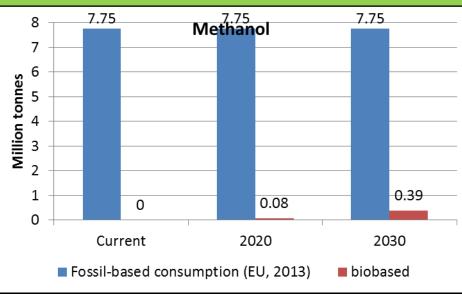
alternative fuel to gasoline, as feedstock for (petro)chemicals

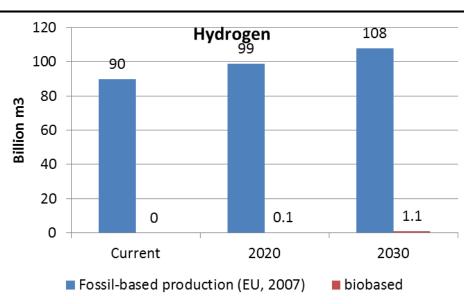
BTX (aromatics)

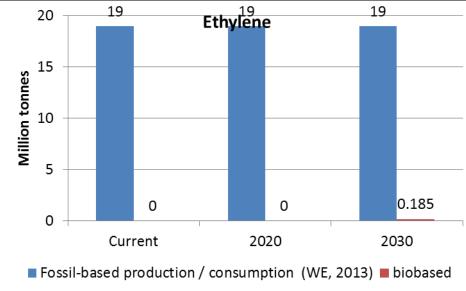
Intermediates as feedstock in (petro)chemical industry: Benzene → polystyrene; Toluene as a solvent, high octane numbers gasolines; o- & p-

synthesis (chemical industry)

Intermediate as feedstock in chemical industry: → MTBE, DME, FAME $(transport\ sector); \rightarrow formaldehyde, acetic\ acid\ (chemical\ industry)$ Hydrogen / hydrogenates (transport sector), ammonia / hydrochloric acid


xylene \rightarrow polyester fibers, films & resins, p-xylene \rightarrow PET (soft drink bottles)


One of the most important platform chemicals: \rightarrow polyethylene,


Current and expected fossil-based resp. biobased production levels in EU

Additional	assumptions PMCs 6-10 52BIOM
Subject	Assumption

Traditional accumptions i most of to the officers				
Subject	Assumption			

Biomass Lignocellulosic (dry matter content: 90%), 17 MJ/kg

Biomethane

Technology: indirect wood gasification Conversion efficiency: 70%LHV

Technology: indirect wood gasification BTX Conversion efficiency: 15%LHV (BTX) & 55%LHV (biomethane)

Technology: pressurised CFB gasification of wood

Conversion efficiency: 60%LHV

Technology: pressurised CFB gasification of wood

Technology: biochemical production of bioethanol, followed by

dehydration of ethanol to ethylene

Conversion efficiency: 60%LHV

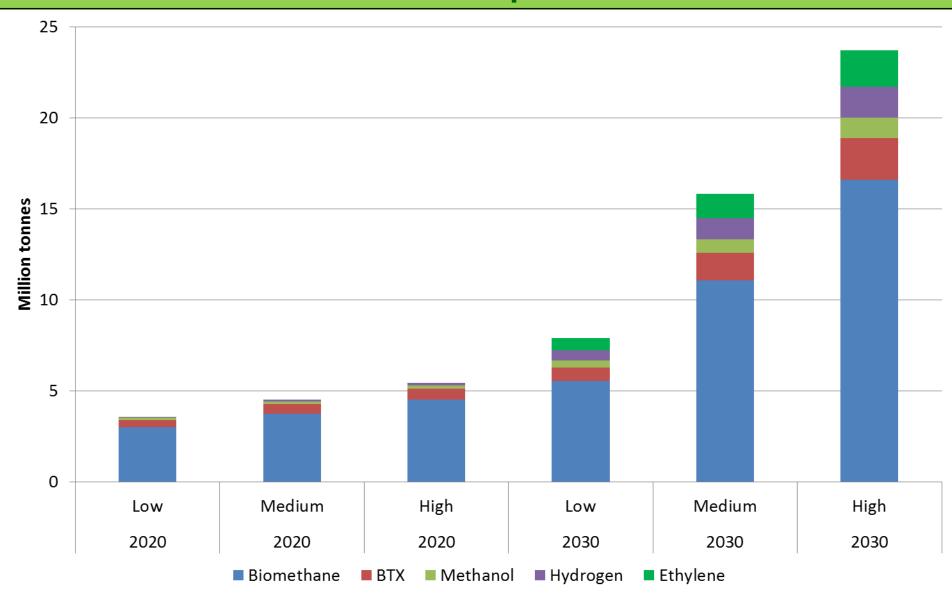
57%wt. (ethylene)

Conversion efficiency: 37%LHV (ethanol)

2020: 80%/100%/120% 2030: 50%/100%/150%

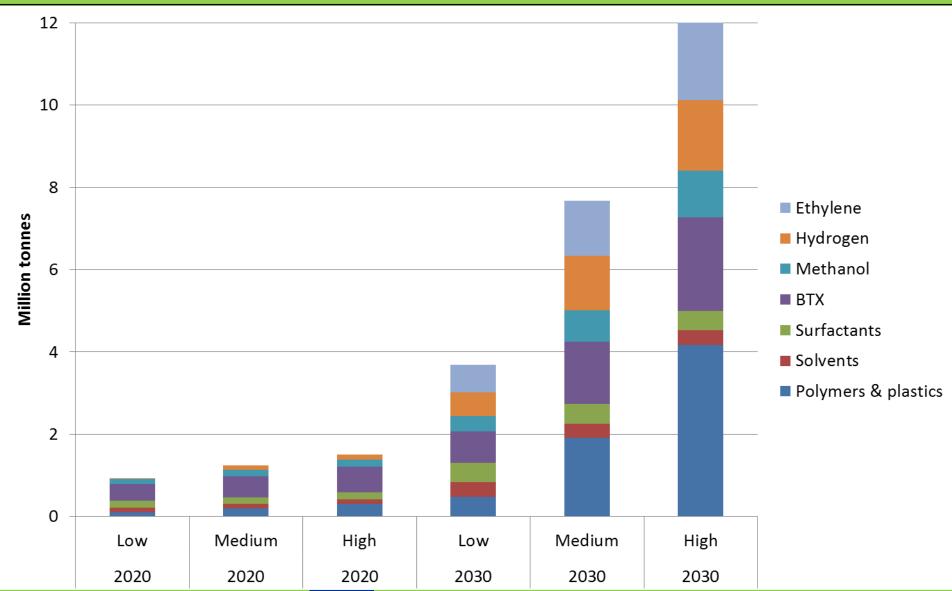
Methanol

Hydrogen


Ethylene

Uncertainties FU

expected production


Projected lignocellulosic biomass demand for PMCs 6-10 in Europe

Projected total lignocellulosic biomass demand for PMCs 4-10 exclusive biomethane PMC

Projected lignocellulosic-based

Solvents

BTX

Surfactants

Methanol

Hydrogen

Ethylene

Kt

kt

Kt

Kt

Bm3

kt

44

69

150

77

0.10

0

22% of FU biobased solvent

production in 2008

13% of EU biobased

surfactant production in 2008

Requires 28 wood gasification

plants of 150 MWth (input)

Requires ≈ 5 wood gasification

plants of 100 MWth (input)

Enough to fuel $\approx 1,000,000$

hydrogen vehicles

44% of current global bio-ethylene production

chemicals & materials in Europe				2ZBIOM	
	Unit	2020	Impression	2030	Impression
Biopolymers & bioplastics	Kt	77	≈20% of EU biobased polymers & plastics production in 2012	778	≈200% of EU biobased polymers & plastics production in 2012

141

195

450

387

1.1

185

7% of FU biobased solvent

production in 2008

5% of EU biobased surfactant

production in 2008

Requires 10 wood gasification

plants of 150 MWth (input)

Requires ≈ 1 wood gasification

plant of 100 MWth (input)

Enough to fuel > 75,000

hydrogen vehicles

Thank you for your attention!

