

Delivery of sustainable supply of non-food biomass to support a resource-efficient Bioeconomy in Europe Sustainability Impact Assessment of a large bioproduct mill in Central Finland

Nenad Šimunović & Joanne Fitzgerald

Presented by Perttu Anttila (Luke)

'Biomassan käyttö tulevaisuudessa biotuotteisiin ja energiaksi' seminar 17 November 2016

This project has received funding from the European Union's Seventh Programme. for research, technological development and demonstration under grant agreement No 608622. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

Comparison

Category	Existing mill	Bioproduct mill	
Investment size	NA	EUR 1.2 billion	
Pulp production	0.5 mill. t	1.3 mill. t	
Resource demand	2.4 mill. m ³ /a	6.5 mill. m³/a	
Truck supplied	1 440 000 m³/a	4 001 000 m³/a	
Railway supplied	621 000 m³/a	1 451 000 m³/a	
Number of trucks	103/day	260/day	≻≈2,5
Number of trains	1-2/day	4/day	
Employment	1,000	2,500	
Electrical self sufficiency	135%	240%	
Truck transport distance	121 km	195 km	
Imports	5%	NA	
PEFC	93%	NA	

Scenarios

Baseline scenario (2007)

- BAU scenario
- Existing mill operational
- Forest management unchanged

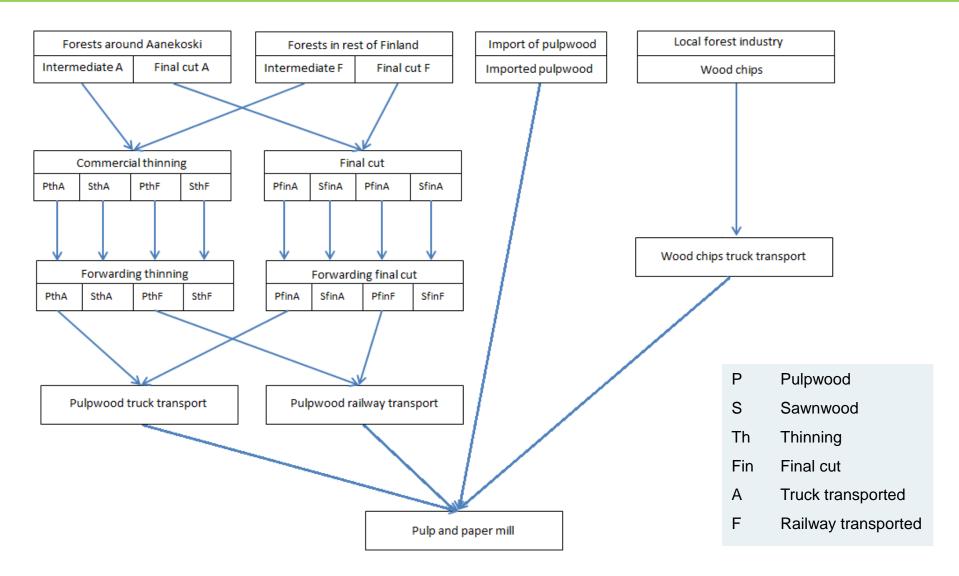
Differences:

- Resource demand (ca. 4 000 000 m³)
- Forest management
- Transport distances

Alternative scenario (2021)

- Bioproduct mill operational
- Forest management
 intensified

Similarities:


- Chain topology (classical pulp mill supply chain)
- Most of the processes indentically defined

Supply chain topology

7

Forest management

Baseline scenario (2007)

- "Realized cutting removals (TH)" scenario in MELA
- This scenario outlines the development of forest resources if the current (2011-2013) roundwood and energy wood harvesting levels are carried out into the future.
- Roundwood removals consist of industrial roundwood and roundwood for households harvested from the area in question.

Alternative scenario (2021)

- "Maximum sustainable removal (SK)" scenario in MELA
- The maximum sustainable removal is defined by maximizing the net present value with 4 % discount rate subject to non-declining periodic total roundwood and energy wood removals, saw log removals and net income.
- There are no sustainability constraints concerning tree species, cutting methods, age classes or the growth/drain ratio in order to efficiently utilize the dynamics of forest structure.

List of processes

1.Forests around Äänekoski	MELA simulator
2.Forests in rest of Finalnd	MELA simulator
3.Commercial thinning	
4.Regeneration felling	Berg and Karjalainen 1993 (productivity, fuel consumption, air pollution and CHC omissions)
5.Forwarding of thinning logs	 pollution and GHG emissions) Eurostat (wages and labour costs)
6.Forwarding of regeneration felling logs	 State of EU forests (number of fatal and non fatal accidents)
7.Pulpwood truck transport	 Metla working paper 210 (Robert Prinz data for fuel consumption) Eurostat (for salaries and employment) METSA Fibre presentations (transport distance) Tapio Ranta: "Logging residues from regeneration fellings for biofuel production a gis-based availability and supply cost analysis" (transport speed and share of road types, share of loaded/unloaded travel and winding factor) IRTAD (International transport forum) report 2014 (traffic accidents) T.Nurminen and J.Heinonen: Characteristics and Time Consumption of Timber Trucking in Finland (productivity calculation) LIPASTO (for NO_x emissions)

List of indicators:

- S2Biom recommendations
- Scenario and case study characteristics
- Concerns voiced by different stakeholders
- Finnish bioeconomy cluster
 recommendations
- Selected indicators were compared with list of ToSIA indicators (DCP)

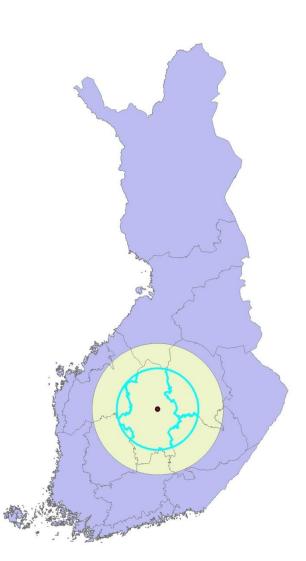
- Occupational accidents (fatal and non-fatal)
- Traffic accidents
- Total workplaces (employment absolute number)
- Labour costs
- Air pollution (NO_x)
- GHG emissions
- Competition index
- Biodiversity index
- Transport distance trucks (loaded and unloaded)



Biodiversity and competition indices

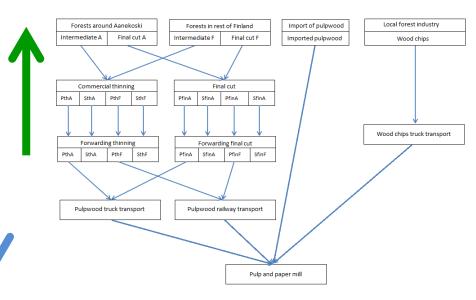
Competition index

- Share of mill feedstock demand in totally available amount of resource.
- Calculated only for the truck supply area


Biodiversity index

- Share of forests older than 100 years in total forest area.
- Calculated only for truck supply area
- Deadwood is a proxy indicator for invertebrate biodiversity, since it is a habitat for a wide array of organisms. The amount of deadwood is an excellent indicator of the conservation value of a forest. (EEA-European environment agency)
- Decaying wood in any stage is considered to be a key biodiversity element in managed forests and crucial for integrated forest management (Kraus and Krumm 2013).
- Old managed forests in Finland have higher share of deadwood than the younger stands (Uotila et al. 2001).

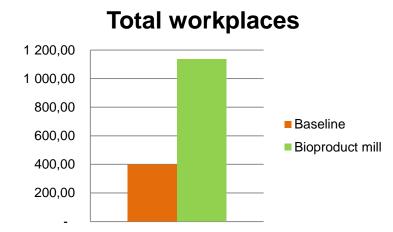
Biodiversity and competition indices


Forestry center	Share of area (%)
Hame-Uusimaa	0,05
Pirkanmaa	2,94
Etela-Savo	14,31
Etela-pohjanmaa	8,63
Keski-Suomi	86,34
Pohjois-Savo	29,96
Forestry center	Share of area (%)
Rannikko	1,20
Hame-Uusimaa	17,67
Pirkanmaa	49,22
Etela-Savo	54,26
Etela-Pohjanmaa	53,70
Keski-Suomi	100,00
Pohjois-Savo	78,43
Pohjois-Karjala	0,02
Pohjosi-Pohjanmaa	9,91

Material flow

- Pulpwood harvested together with sawnwood
- Split share ratios and initialization data calculated from bottom up
- Indicator calculation calculated from the top down

→Region
 →Cut type
 →Assortment share



Total workplaces

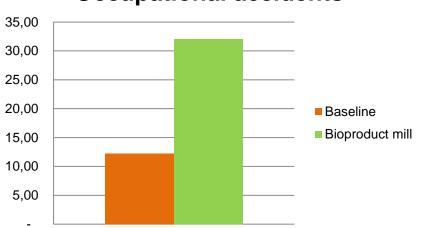
Value	Baseline	Bioproduct mill	
Total	398,10	1135,59	
per m ³	0.0001693	0.0001674	
Delta	737.49		
Ratio	2.85		

Labour costs

Value	Baseline	Bioproduct mill		
Total (€)	21 524 871	60 978 012		
€ per m ³	9.16	8.99		
Delta	39 453 141.73			
Ratio	2.83			

Results (social)

Occupational accidents fatal


Value	Baseline	Bioproduct mill	
Total	0,05	0,13	
per m ³	0	0	
Delta	0.08		
Ratio	2.63		

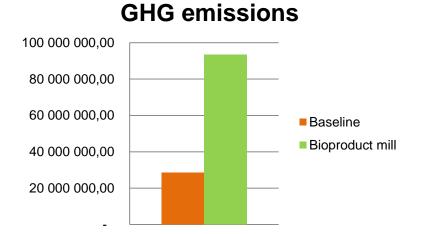
Traffic accidents

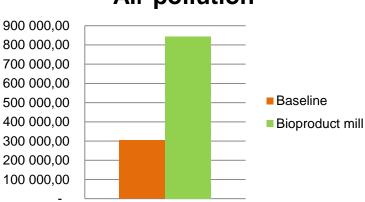
Value	Baseline	Bioproduct mill	
Total	0.55 2.45		
per m ³	0.000002	0.0000004	
Delta	1.91		
Ratio	4.48		

Occupational accidents non-fatal

Value	Baseline	Bioproduct mill		
Total	12.21	32.05		
per m ³	0.0000052	0.0000047		
Delta	19.85			
Ratio	2.63			

Occupational accidents




GHG emissions

Value	Baseline	Bioproduct mill	
Total	28 387 839.13	93 332 856.63	
per m ³	12.07	13.76	
Delta	64 945 017.50		
Ratio	3.29		

Air pollution (NO_x)

Value	Baseline	Bioproduct mill		
Total	303 708.96	843 161.40		
kg per m ³	0.13	0.12		
Delta	539 161.40			
Ratio	2.78			

Air pollution

20

Truck transport distance (km)

Value	Baseline Bioproduct mi			
Loaded	121	195		
Unloaded	45.38	73.13		
Radius	93 150			
Delta	74.00			

Average truck speed							
Full load				Empty			
Road type	speed (km/h)	share		Road type	speed (km/h)	share	
asphalt	66	0,9	59,4	asphalt	66	0,78	51,48
gravel	27	0,08	2,16	gravel	34	0,12	4,08
forest road	9	0,02	0,18	forest road	13	0,1	1,3
w average speed			61,74	w average spee	d		56,86

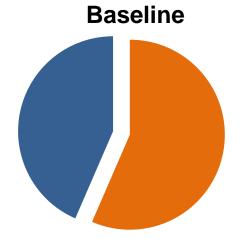
	Loaded travel	Empty travel	SUM	Unit			Loaded travel	Empty travel	SUM	Unit
Distance	121	45,375	166,375	km] [Distance	195	73,125	268,125	km
Hours	1,959831552	0,798012663	2,757844214	h		Hours	3,15840622	1,286053465	4,44446	h
Productivity			17,47741941	m3/h		Productivity			10,84496	m3/h

Biodiversity index

- Share of forests older than 100 years in total forest area.
- Calculated only for truck supply area of the bioproduct mill
- Old managed forests in Finland have higher share of deadwood than the younger stands (Uotila et al. 2001.).
- Deadwood is a proxy indicator for invertebrate biodiversity, (EEA-European environment agency)
- Decaying wood in any stage is considered to be a key biodiversity element in managed forests.

Forests in Central Finland already very intensively managed!

Value	Baseline	Bioproduct mill		
Total	10.7%	7.5%		



Competition index

- Share of mill feedstock demand in totally available amount of resource.
- Calculated only for the truck supply area

Value	Baseline	Bioproduct mill		
Total	56.51%	128.90%		
Delta	72	2.39%		

Bioproduct mill

- Positive effects on employment and local economy
- Negative impact on biodiversity indicator chosen
- Negative impacts that are proportional to increase in productivity on number of traffic and workplace accidents, air pollution and GHG emissions.
- Negative impacts on availability of raw material for competing uses within truck supply area.

