

Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe

# S2Biom Project Grant Agreement n°608622

# **D2.1**

# A method for standardized biomass characterization and minimal biomass quality requirements for each biomass conversion technology

30 April 2015

















# **About S2Biom project**

The S2Biom project - Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe - supports the sustainable delivery of non-food biomass feedstock at local, regional and pan European level through developing strategies, and roadmaps that will be informed by a "computerized and easy to use" toolset (and respective databases) with updated harmonized datasets at local, regional, national and pan European level for EU28, Western Balkans, Moldova, Turkey and Ukraine. Further information about the project and the partners involved are available under <u>www.s2biom.eu</u>.





# About this document

This report corresponds to D2.1 A method for standardized biomass characterization and minimal biomass quality requirement for each biomass conversion technology of S2Biom. It has been prepared by:

| Due date of deliverable: | M18                                                                  |
|--------------------------|----------------------------------------------------------------------|
| Actual submission date:  | 2015-04-24                                                           |
| Start date of project:   | 2013-01-09                                                           |
| Duration:                | 36 months                                                            |
|                          |                                                                      |
| Work package             | 2                                                                    |
| Task                     | 2.1                                                                  |
| Lead contractor for this | BTG                                                                  |
| deliverable              |                                                                      |
| Editor                   | Martijn Vis                                                          |
| Authors                  | Martijn Vis (BTG), Rik te Raa (BTG) Douwe van den Berg (BTG), Harrie |
|                          | Knoef (BTG), Eija Alakangas (VTT), Janne Karki (VTT) Ayla Uslu (ECN) |
|                          | Paulien Harmsen (DLO), Wolter Elbersen (DLO)                         |
| Quality reviewer         | Rik te Raa                                                           |

| Dissemination Level |                                                                                        |    |  |
|---------------------|----------------------------------------------------------------------------------------|----|--|
| PU                  | Public                                                                                 | PU |  |
| PP                  | Restricted to other programme participants (including the Commission Services)         |    |  |
| RE                  | Restricted to a group specified by the consortium (including the Commission Services): |    |  |
| CO                  | Confidential, only for members of the consortium (including the Commission Services)   |    |  |

| Version                                | Date | Author(s)                                                           | Reason for modification | Status |
|----------------------------------------|------|---------------------------------------------------------------------|-------------------------|--------|
| 1.0 30 April 2015 M.W. Vis Cor<br>on v |      | Compilation of deliverable D2.1 based on various working documents. | ОК                      |        |
|                                        |      |                                                                     |                         |        |
|                                        |      |                                                                     |                         |        |
|                                        |      |                                                                     |                         |        |

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No 608622.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.



# **Table of contents**

| 1. \$                                                              | Summary of activities 4                                   |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| 1.1                                                                | 1 Objectives and relation to other S2BIOM activities 4    |  |  |  |
| 1.2                                                                | 2 Activities performed 5                                  |  |  |  |
| ANN                                                                | EX I Description and selection of conversion technologies |  |  |  |
| ANNEX II Classification of biomass properties - Draft instructions |                                                           |  |  |  |
| ANNEX III Instructions on the database of conversion technologies  |                                                           |  |  |  |

# List of Figures

| Figuro | 1 | Structure of WP2 in V | NP1-1 of S2BIOM | nro | iect A |   |
|--------|---|-----------------------|-----------------|-----|--------|---|
| rigule | 1 | Structure of WFZ III  |                 | pro | Jeci 4 | 2 |

# 1. Summary of activities

# 1.1 Objectives and relation to other S2BIOM activities

The overall objective of WP 2 is:

- To identify and extensively characterise existing and future non-food biomass conversion technologies for energy and biobased products.
- To develop a standardized methodology according to which the different biomass categories identified and quantified in WP1 need to be characterised.
- To assess the optimal match of biomass categories of different quality with the existing and future non-food biomass conversion technologies.

This D2.1 report summarises the activities that have been performed in order to develop a *method for standardized biomass characterisation and minimal biomass quality requirement for each biomass conversion technology*. The main idea of D2.1 is to describe the desired biomass input specifications of the various conversion technologies for lignocellulosic biomass. In order to do so first relevant conversion technologies have been described and selected, followed by setting up a proper template for describing the relevant biomass input specifications. The biomass specifications and technology descriptions have been used to develop two databases to collect data from a wide range of technologies and biomass types. These databases provide the relevant data for the selection method to match biomass types with the best conversion technologies (Deliverable D2.2). This selection method will be further elaborated into a matching tool (part of WP4) for optimisation of biomass use from a technical perspective, with linkages to pretreatment and logistical parameters as developed in WP3. Figure 1 shows the linkages between WP1-4.



Figure 1 Structure of WP2 in WP1-4 of S2BIOM project



- The following linkages with other WPs have been established.
  - WP1: technologies cover the biomass sources assessed in WP1.
  - WP3: close cooperation with WP3 logistics
  - The database structure for conversion technologies have been developed in close cooperation with WP 4.
  - o Coordination on information needed in the The RESolve model in WP7
  - All information will be available though the viewing tool in WP4, also for use in other WP2 (theme 2 and 3).

# **1.2 Activities performed**

In this section the main flow of activities is summarised. The detailed results are written down in three Annex reports.

- ANNEX I Description and selection of conversion technologies.
- ANNEX II Classification of biomass properties Draft instructions
- ANNEX III Instructions on the database for conversion technologies

The task was carried out in various steps:

- First an overview has been made of relevant existing and future technologies relevant for conversion of lignocellulosic biomass in combination with applications like heat, power, transport fuels, biochemicals in the period until 2030. From long list a selection has been made of conversion technologies that are relevant today, and that are expected to contribute significantly to renewable energy and the biobased economy in 2020 and 2030. In the selection and description of conversion technologies the following general considerations have been taken into account:
  - The S2BIOM project focusses on lignocellulosic conversion technologies. Therefore, the classification should be relevant for this category of biomass. For instance technologies using sugar, starch or oil crops are not considered.
  - The DOW makes a distinction between "existing" and "future" conversion technologies. This distinction has been replaced by an indication of the Technology Readiness Levels (TRL) to describe the state of the technology. The EC uses TRL in its Horizon 2020 programme. See Annex A. TRL 7-8 can be regarded as "existing"; TRL 1-6 as "future".
  - The technology descriptions consider when appropriate changes in time for conversion efficiency and investment costs for 2020 and 2030. This is especially relevant for the future conversion technologies. For other data items a single value will be provided. Uncertainty and variations within one technology are at present day already large, which makes estimation of future variations not useful.
  - Conversion technologies have been described that produce heat, power, heat & power, fuels, chemicals and products. In the technology description, all outputs will be indicated and described.



- Each technology has its own particular input specifications. However, three main classes of technologies can be distinguished for which similar parameters are relevant, whereas the values can differ. These classes are thermal, chemical and
- A number of conversion technologies has been divided into sub-categories (especially combustion, gasification, anaerobic digestion) related to their technical properties, biomass input and capacity range.

biochemical conversion technologies

- The focus will be on conversion technologies that can be applied in Europe and meet European environmental standards and requirements of BAT.
- For the main pathways (that are considered in the modelling in other WPs) cost data will be gathered and calculated and estimated both on specific investment costs as well as operation and maintenance costs.
- Inputs that are relevant for the greenhouse gas performance (e.g. need of electricity, natural gas, chemicals) will be described in the mass and energy balance. Complete calculation of GHG performance or GHG factors are case specific and will not be described. Emissions for construction of the conversion technologies have not been described in WP2.
- Carbonization is not included in the list of technologies. In Europe charcoal is mainly used for barbeque, an application that provides heat & smoke but does not add to the renewable energy targets of the EU.
- In order to avoid long descriptions of technologies, in the database reference will be made to relevant literature and actual data from running plants/demo's/projects.

For more details see the report "ANNEX I D2.1 Description and selection of conversion technologies".

- During an iterative process that started on October 2013 until March 2014, the relevant biomass input parameters were determined. Where possible, use has been made of existing biomass classification schemes, in particular relevant ISO standards like EN ISO 17225-1. An overview of these standards is presented in "ANNEX II Classification of biomass properties -Draft instructions".
- The final method for standardized biomass characterisation and minimal biomass requirements is reflected in "ANNEX III Instructions on the database for conversion technologies" that was released together with the database of conversion technologies on March 2014.
- The months thereafter until March 2015 were used to fill the database with the actual biomass input requirements for tech technology, thereby meeting Milestone MS3. The final database will be delivered in Month 30 (Deliverable D2.3).



ANNEX I Description and selection of conversion technologies. ANNEX II Classification of biomass properties - Draft instructions ANNEX III Instructions on the database of conversion technologies



Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe

S2Biom Project Grant Agreement n°608622

# ANNEX I of D2.1

# Description and selection of conversion technologies

# 30 April 2015













Annex I of D2.1





# **About S2Biom project**

The S2Biom project - Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe - supports the sustainable delivery of non-food biomass feedstock at local, regional and pan European level through developing strategies, and roadmaps that will be informed by a "computerized and easy to use" toolset (and respective databases) with updated harmonized datasets at local, regional, national and pan European level for EU28, Western Balkans, Moldova, Turkey and Ukraine. Further information about the project and the partners involved are available under <u>www.s2biom.eu</u>.





# About this document

This report is Annex I of Deliverable D2.1 "A method for standardized biomass characterization and minimal biomass quality requirement for each biomass conversion technology of S2Biom". It has been prepared by:

| Due date of deliverable: | M18                                                           |
|--------------------------|---------------------------------------------------------------|
| Actual submission date:  |                                                               |
| Start date of project:   | 2013-01-09                                                    |
| Duration:                | 36 months                                                     |
|                          |                                                               |
| Work package             | 2                                                             |
| Task                     | 2.1                                                           |
| Lead contractor for this | BTG                                                           |
| deliverable              |                                                               |
| Editor                   | Martijn Vis                                                   |
| Authors                  | Martijn Vis (BTG), Rik te Raa (BTG) Douwe van den Berg (BTG), |
|                          | Harrie Knoef (BTG), Janne Karki (VTT) Ayla Uslu (ECN) Paulien |
|                          | Harmsen (DLO), Wolter Elbersen (DLO)                          |
| Quality reviewer         |                                                               |

| Dissemination Level |                                                                                        |    |  |
|---------------------|----------------------------------------------------------------------------------------|----|--|
| PU                  | Public                                                                                 | PU |  |
| PP                  | Restricted to other programme participants (including the Commission Services)         |    |  |
| RE                  | Restricted to a group specified by the consortium (including the Commission Services): |    |  |
| CO                  | Confidential, only for members of the consortium (including the Commission Services)   |    |  |

| Version | Date       | Author(s)           | Reason for modification                          | Status |
|---------|------------|---------------------|--------------------------------------------------|--------|
| 1.0     | 15-12-2013 | M.W. Vis            | First version - request for input from partners  |        |
| 1.1     | 30-03-2014 | M.W. Vis            | Second version – request for input from partners |        |
| 1.2     | 08-09-2014 | M.W. Vis et al.     | Third version - compilation                      |        |
| 1.4     | 29-10-2014 | M.W. Vis et al.     | Update section 3.3 P. Harmsen                    |        |
| 1.5     | 30-4-2015  | M.W. vis, R. te Raa | Final editing                                    | ОК     |

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 608622.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.



# **Table of contents**

| 1. | Intro | oduction                                                  | 5  |
|----|-------|-----------------------------------------------------------|----|
| 2. | The   | rmal conversion processes                                 |    |
|    | 2.1   | Direct combustion of solid biomass (VTT)                  | 6  |
|    | 2.1.1 | Processes                                                 | 6  |
|    | 2.1.2 | 2 Applications                                            | 6  |
|    | 2.1.3 | 8 Selection for description in database                   | 7  |
|    | 2.2   | Gasification technologies (VTT)                           | 7  |
|    | 2.2.1 | Processes                                                 | 7  |
|    | 2.2.2 | 2 Applications                                            | 8  |
|    | 2.2.3 | 3 Selection for description in database                   | 8  |
|    | 2.3   | Fast pyrolysis (BTG)                                      |    |
|    | 2.3.1 | Processes                                                 | 9  |
|    | 2.3.2 | 2 Applications                                            | 12 |
|    | 2.3.3 | 3 Selection for description in database                   | 13 |
|    | 2.4   | Torrefaction (ECN)                                        | 13 |
|    | 2.4.1 | Processes                                                 | 13 |
|    | 2.4.2 | 2 Applications                                            | 15 |
|    | 2.4.3 | 8 Selection for description in database                   | 15 |
|    | 2.5   | Syngas platform (ECN)                                     | 16 |
|    | 2.5.1 | Processes                                                 | 16 |
|    | 2.5.2 | 2 Applications                                            | 16 |
|    | 2.5.3 | 8 Selection for description in database                   | 16 |
|    | 2.6   | Treatment in subcritical water (BTG)                      | 16 |
|    | 2.6.1 | Processes                                                 | 16 |
|    | 2.6.2 | Selection for description in database                     | 19 |
|    | 2.7   | Treatment in supercritical water (BTG)                    | 20 |
|    | 2.7.1 | Processes                                                 | 20 |
|    | 2.7.2 | P Applications                                            | 21 |
|    | 2.7.3 | 8 Selection for description in database                   | 21 |
| 3. | Che   | mical and biochemical conversion processes                |    |
|    | 3.1   | Anaerobic digestion (DLO) of high ligno-cellulose biomass | 22 |
|    | 3.1.1 | Processes                                                 | 22 |
|    | 3.1.2 | 2 Applications                                            | 23 |



| 3.1.3 | Selection for description in database                     | 24 |
|-------|-----------------------------------------------------------|----|
| 3.2   | Techniques from pulp and paper industry (VTT)             | 24 |
| 3.2.1 | Processes                                                 | 24 |
| 3.2.2 | Applications                                              | 24 |
| 3.2.3 | Selection for description in database                     | 25 |
| 3.3   | Pretreatment, hydrolysis and fermentation processes (DLO) | 26 |
| 3.3.1 | Chemical pretreatment processes                           | 26 |
| 3.3.2 | Explosion pretreatment processes                          | 29 |
| 3.3.3 | Biochemical hydrolysis and fermentation processes         |    |
| 3.3.4 | Applications                                              |    |
| 3.3.5 | Selection for description in database                     |    |

# List of Figures

| Figure 1: Process flow diagram fast pyrolysis                      | 11 |
|--------------------------------------------------------------------|----|
| Figure 2 Process diagram of TORBED torrefaction plant              | 14 |
| Figure 3 ECN/Andritz torrefaction demo plant in Stenderup, Denmark | 15 |
| Figure 4: Process flow diagram Hydro Thermal Upgrading             | 18 |
| Figure 5: Schematic overview reforming in superctrical water       | 21 |

# **List of Tables**

| Table 1: Worldwide biomass pyrolysis units in 2012 | 9    |
|----------------------------------------------------|------|
| Table 2 Overview of reactor technologies:          | . 13 |





# 1. Introduction

In this document an overview of conversion technologies is presented that are potentially relevant for the production of energy and materials in the period up till 2030. Based on this overview, a selection is made of conversion processes that are relevant today, and that are expected to contribute significantly to renewable energy and the biobased economy in 2020 and 2030. This selection is described in further detail in a database that will feed several models used in the S2BIOM project. The following main classification of conversion technologies has been used:

#### I. Thermal conversion technologies

| 1. | Direct combustion of solid biomass | VTT |
|----|------------------------------------|-----|
| 2. | Gasification technologies          | VTT |
| 3. | Fast pyrolysis                     | BTG |
| 4. | Torrefaction                       | ECN |
| 5. | Syngas platform                    | ECN |
| 6. | Treatment in subcritical water     | BTG |
| 7. | Treatment in supercritical water   | BTG |

#### II . Chemical and biochemical conversion technologies

| 8.  | Anaerobic digestion                     | DLO |
|-----|-----------------------------------------|-----|
| 9.  | Techniques from pulp and paper industry | VTT |
| 10. | Chemical pretreatment                   | DLO |
| 11. | Explosion processes                     | DLO |
| 12. | Biochemical hydrolysis & Fermentation   | DLO |



# 2. Thermal conversion processes

# 2.1 Direct combustion of solid biomass (VTT)

## 2.1.1 Processes

Primary conversion technologies:

- Domestic wood-burning appliances
  - o Residential batch-fired wood-burning appliances
    - Wood stoves
    - Fireplace inserts and zero clearance fireplaces
    - Heat storing stoves
    - Wood log boilers
  - Pellet appliances and burners
    - Pellet stoves
    - Pellet boilers (CV system)
  - Wood chips appliances
    - Pre-ovens
    - Under-fire boilers
    - Stoker burners
- Combustion technologies for industrial and district heating systems
  - Fixed bed combustion
    - Grate furnaces
    - Underfeed stokers
  - o Fluidized bed combustion
    - Bubbling
    - Circulating
  - o Pulverised fuel combustion

# 2.1.2 Applications

- Power generation (in combination with fixed/fluidized bed combustion)
  - o Steam turbines
  - Organic Rancine Cycle (ORC)
  - o Closed thermal cycles for power production
  - Steam piston engines
  - o Steam screw engines
  - o Closed gas turbines
  - Stirling engines
- Co-combustion (for power production)
  - $\circ \quad \text{Direct co-firing} \\$
  - o Indirect co-firing
- Heat generation (heat only and CHP)



## 2.1.3 Selection for description in database

Selection of solid biomass combustion technologies that will be described in database

- Domestic residential batch fired stoves for heat (relevant in future only for emergency and stand by heat source during unusual coldness and power/gas supply blackout, continuous use limited by emission problems/regulations
- Domestic pellet burners for heat (stove/hot water boiler) use is possible in the future too, efficiency and emissions on acceptable level
- Fixed bed combustion for heat (hot water boilers), small scale installation are often batch operating, difficulties to fulfil emissions standards in the future, development needed
- Fixed bed combustion for CHP (steam cycle) and condensing electricity, stand on market and use, even performance is difficult or impossible to develop
- Fluidised bed combustion for CHP (steam cycle) and condensing electricity, dominant technology in the future; all above described problems can be avoided
- Direct co-combustion in coal fired power plants, share can be higher in future when CFBtechnology more commonly in use
- Waste incinerators with energy recovery. Low power generation efficiency, very conservative market segment, lot of development needed to save resources.

# 2.2 Gasification technologies (VTT)

### 2.2.1 Processes

Primary conversion technologies:

- Fixed bed
  - o Updraft
  - o Downdraft
    - Open core
    - Multi-stage
  - o Crossdraft
- Fluidized bed
  - Bubbling (BFB)
  - Circulating (CFB)
    - Atmospheric
    - Pressurised
- Entrained flow
  - o Slagging
  - o Non-slagging
- Twin-bed
  - o Double fluidized bed



• Oxygen blown gasification

+ gas cleaning

# 2.2.2 Applications

- Gas/diesel engine
- IGCC
- Secondary conversion syngas (described elsewhere)
- Direct combustion in boiler & kiln

### 2.2.3 Selection for description in database

Most relevant commercial and industrially demonstrated gasification technologies and applications are selected to database. Small scale gasification technologies (under 5 MW fuel) for CHP application has countless number of different version and those are not taken to the database. Most common fixed bed technologies (downdraft and updraft) are described in the database.

Fluidized bed gasifiers cover bubbling and circulating, atmospheric and pressurized, air and oxygen/steam blown technologies and their different applications. Gasification gas cleaning is described in different applications. Syngas production application is limited to raw syngas production (gasification, hot gas filtration, catalytic reforming). Shift reaction, AGR and synthesis are described elsewhere.

- Fixed bed downdraft
  - o CHP (gas engine)
- Fixed bed updraft
  - o Direct combustion
- Bubbling fluidized bed
  - o CHP (gas engine)
  - o IGCC
  - o syngas production
  - $\circ \quad \text{direct combustion} \\$
- Circulating Fluidized bed
  - o CHP (gas engine)
  - o IGCC
  - o Direct combustion
  - o syngas production
- Entrained flow for syngas production
- Dual Fluidized bed
  - CHP (gas engine)
  - o syngas production



Selection of technologies that will be described in database:

- Fixed bed downdraft (as far as relevant for Europe)
- Fixed bed updraft (as far as relevant for Europe)
- Bubbling fluidized bed for CHP (gas engine)
- Circulating Fluidized bed for CHP (gas engine)
- Entrained flow for syngas production.

# 2.3 Fast pyrolysis (BTG)

### 2.3.1 Processes

Fast pyrolysis is a pathway in which biomass is converted to pyrolysis oil and other products. This technology can play a role in a biorefinery concept for the production of energy or other products which represents a higher value.

Several technologies are developed in which fast pyrolysis takes place. Currently, a number of pilot plants are in use worldwide. This technology is now ready for further up scaling. Fortum (Finland) and BTG (The Netherlands) are constructing a large scale pyrolysis plant.

An overview of fast pyrolysis technologies and plants is given in the table below.

| Host Organisation          | Country     | Technology     | Capacity | Applications   | Status        |
|----------------------------|-------------|----------------|----------|----------------|---------------|
| APPIToch (                 | Canada      | Augor          |          | Fuel           | Operational   |
| ABRITECH                   | Callaua     | Augei          | 70-700   | Fuel           | Operational   |
| Advanced biorefinery Inc., |             |                | 2000     |                | Commissioning |
| Forespect                  |             |                |          |                |               |
| Agri-Therm/ University of  | Canada      | Fluid bed      | 420      | Fuel           | Upgrade       |
| Western Ontario            |             |                |          |                |               |
| Biomass Engineering Ltd.   | UK          | Fluid bed      | 250      | Fuel and       | Construction  |
|                            |             |                |          | products       |               |
| BTG                        | Netherlands | Rotating cone  | 200      | Fuel           | Operational   |
| BTG-BTL EMPYRO             |             |                | 5000     |                | Construction  |
| Ensyn Several              | Canada &    | Circulating    | 3-3100   | Fuel and       | Operational   |
|                            | USA         | fluidised bed  |          | chemicals      |               |
| Fraunhofer UMSICHT         | Germany     | Ablative       | 250      | Fuel           | Commissioning |
| Fortum                     | Finland     | Fluidised bed  | 10,000   | Fuel           | Commissioning |
| Genting                    | Malaysia    | Rotating cone  | 2000     | Fuel           | Dormant       |
| GTI                        | USA         | Hydropyrolysis | 50       | Transportation | Commissioning |
|                            |             |                |          | fuels          |               |
| КІТ                        | Germany     | Twin Auger     | 1000     | Transportation | Operational   |
|                            |             |                |          | fuel           |               |
| Metso                      | Finland     | Fluid bed      | 300      | Fuel           | Operational   |

Table 1: Worldwide biomass pyrolysis units in 2012<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Jani Lehto et al, Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass, Applied Energy 116 (2014) 178-190.





| Mississippi State University | USA     | Auger          | 200      | Fuel           | Construction  |
|------------------------------|---------|----------------|----------|----------------|---------------|
| National Renewable Energy    | USA     | Fluid bed      | 12       | Fuels and      | Operational   |
| Laboratory                   |         |                |          | chemicals      |               |
| Pytec                        | Germany | Ablative       | 250      | Fuel           | Commissioning |
| Red arrow                    | USA     | Circulating    | 125-1250 | Food products  | Operational   |
|                              |         |                |          | and fuel       |               |
| Ensyn Several                |         | Fluidised bed  |          |                |               |
| Renewable oil International  | USA     | Auger/         | 105      | Fuel           | Operational   |
| LLC                          |         | moving bed     |          |                |               |
| RTI International            | USA     | Catalytic fast | 40       | Transportation | Construction  |
|                              |         | pyrolysis      |          | fuel           |               |
| UDT                          | Chile   | Fluid bed      | 120      | Fuel           | Operational   |
| UOP                          | USA     | Circulating    | 40       | Transportation | Operational   |
|                              |         | fluidised bed  |          | fuel           |               |
| University of Science and    | China   | Fluid bed      | 120      | Fuel           | Operational   |
| Technology of China, Hefei   |         |                |          |                |               |
| Virginia Tech                | USA     | Fluid bed      | 250      | Fuel           | Operational   |
| VTT                          | Finland | Fluidised bed  | 20       | Fuel           | Operational   |

The major players in the field of pyrolysis technology are Ensyn, Fortum and BTG. A brief overview of these companies and their technologies are given.

#### Ensyn<sup>2</sup>

Ensyn's RTP technology is a processing system that uses heat to thermally crack carbon-based feedstocks such as wood biomass (cellulose, lignin) into high yields of pyrolysis oil product. The core RTP process does not employ high temperatures or excessive operating pressure. The RTP pyrolysis process is based on the application of a hot "transported" bed (typically sand) that is circulating between two key vessels. Feedstock, such as wood residues, are subjected to fast, intimate contact with the hot sand for under a few seconds, resulting in the thermal cracking of the feedstock to gases and vapours. Product vapours are rapidly quenched, or cooled, and recovered as a light liquid product.

#### **Fortum**<sup>3</sup>

Fortum invests in the commercialisation of the new fast pyrolysis technology by building a pyrolysisoil plant connected to the Joensuu power plant in Finland. The integrated bio-oil plant, based on fast pyrolysis technology, is one of the first of its kind in the world on an industrial scale.

The pyrolysis plant, which will be integrated with the combined heat and power production plant (CHP) in Joensuu, will produce electricity and district heat and 50,000 tonnes of bio-oil per year. The bio-oil raw materials will include forest residues and other wood based biomass.



<sup>&</sup>lt;sup>2</sup> <u>http://www.ensyn.com/technology/overview/</u>

<sup>&</sup>lt;sup>3</sup> <u>http://www.fortum.com/en/mediaroom/pages/fortum-invests-eur-20-million-to-build-the-worlds-first-industrial-scale-integrated-bio-oil-plant.aspx</u>



### **BTG**<sup>4</sup>

BTG's fast pyrolysis process is based on the rotating cone reactor developed by the University of Twente. Biomass particles at room temperature and hot sand particles are introduced near the bottom of the cone where the solids are mixed and transported upwards by the rotating action of the cone. In this type of reactor, rapid heating and a short gas phase residence time can be realized.



Figure 1: Process flow diagram fast pyrolysis<sup>5</sup>.

Biomass particles are fed near the bottom of the pyrolysis reactor together with an excess flow of hot heat carrier material such as sand, where it is being pyrolysed. The produced vapours pass through several cyclones before entering the condenser, in which the vapours are quenched by recirculated oil. The pyrolysis reactor is integrated in a circulating sand system composed of a riser, a fluidized bed char combustor, the pyrolysis reactor, and a down-comer. In this concept, char is burned with air to provide the heat required for the pyrolysis process. Oil is the main product; non-condensable pyrolysis gases are combusted and can be used e.g. to generate additional steam. Excess heat can be used for drying the feedstock.

Two test facilities are available in BTG's lab. A small unit (2-3 kg/hr) to enable rapid screening of potential feedstocks, and a 100 - 200 kg/hr pilot plant. The latter one provides reliable and representative data for a full scale plant. The pilot plant has processed in total over 70 tonnes of oil for a number of clients. In Hengelo (the Netherlands) a 5 tonnes/hr pyrolysis plant is under



<sup>&</sup>lt;sup>4</sup> <u>http://www.btgworld.com/nl/rtd/technologies/fast-pyrolysis</u>

<sup>&</sup>lt;sup>5</sup> Ref: BTG Biomass Technology Group. <u>www.btgworld.com</u>



construction. This unit will convert wood into pyrolysis oil, process steam and electricity. For further details see the project website of the EMPYRO plant<sup>6</sup>.

# 2.3.2 Applications

Pyrolysis oil is used as a platform material and has several applications. Direct applications are for instance combustion. Pyrolysis oils can also be used as input for secondary processes such as hydrogenation, fractionation and gasification. For secondary applications, more (upgrading) processes are required.

Direct applications:

- Combustion
  - o In small heating plant
  - In large gas/oil fired heating plant
  - o Direct combustion in diesel engine

In Borculo (The Netherlands), a large combustion plant of 25  $MW_{th}$  is under construction for process heat in an industrial complex. This is a dual fuel boiler and run on a mixture of pyrolysis oil and natural gas or biogas.

Secondary conversion processes:

- Hydrogenation of pyrolysis oil is necessary for upgrading to stable pyrolysis oil or even further to fuel quality.
- Fractionation and extraction of pyrolysis oil to valuable materials
- Gasification of pyrolysis oil to syngas. This syngas is used as platform for input material in the chemical industry.

Pyrolysis oil has the following secondary applications:

- Diesel: by hydrogenation of pyrolysis oils, fuels such as diesel, petrol and jet fuel is produced. This hydrogenation process consists of several processes where hydrogen is added, oxygen removed and fuels are produced.
- Co-refinery: pyrolysis oils can be added in the refinery process of crude oil to fuels. Before this is possible, the pyrolysis oil needs to be stabilized by a hydrogenation step. A fraction of pyrolysis oil is added in the crude oil and refined to fuels such as diesel, jet fuel and petrol.
- Pyrolysis oils consist of three fractions: the watery, sugar and lignin fractions. Pyrolysis oil is separated in these three fractions by extraction and shifting. The lignin fractions have applications in bitumen, a source for asphalt and roof materials. Sugar fraction is a platform chemical as source for the chemical industry. The water fraction contains valuable materials such as acids.



<sup>&</sup>lt;sup>6</sup> <u>http://www.empyroproject.eu/</u>



# 2.3.3 Selection for description in database

The following conversion chains have been selected for description in the database:

- Pyrolysis and application pyrolysis oil in a boiler for heat and steam generation
- Pyrolysis and application pyrolysis oil in diesel engine for electricity and heat generation
- Pyrolysis and upgrading (hydrogenation) for advanced biofuel production.

The 5 tonne/hour Empyro plant using BTGs rotating cone pyrolysis technology has been selected for description in the database, as it is representative for the current state-of-art of pyrolysis technology.

The most robust application of pyrolysis oil is heat and steam generation in a boiler. Another very promising application that could become commercially available within the next years is the use of pyrolysis oil in a diesel engine for electricity and heat production. Given the relevance of low ILUC advanced biofuels for the automotive sector, hydrogenated pyrolysis oil for advanced biofuels production is selected as well.

# 2.4 Torrefaction (ECN)

### 2.4.1 Processes

Torrefaction is a mild thermal treatment of biomass under low-oxygen conditions. Torrefaction results in a homogeneous fuel, with a much improved grinding quality, a higher energy density and containing fewer impurities. The torrefied biomass is hydrophobic, preventing it from absorbing water during storage and making it resistant to rot and fermentation. When the torrefied biomass is densified through pelletisation it results in a more energy-dense product. A typical mass and energy balance for woody biomass torrefaction is that 70% of the mass is retained as a solid product, containing 90% of the initial energy content. The other 30% of the mass is converted into torrefaction gas, which contains only 10% of the energy of the biomass. Several torrefaction is presented in Table 2. Several torrefaction technologies in Europe claim to have reached commercial production.

#### Table 2 Overview of reactor technologies<sup>7</sup>:

| Reactor technologies                     | Companies involved                          |
|------------------------------------------|---------------------------------------------|
| Rotating drum                            | CDS (UK), Torr-Coal (NL), BIO3D (FR), EBES  |
|                                          | AG (AT), 4Energy Invest (BE), BioEndev/     |
|                                          | ETPC (SWE), Atmosclear S.A. (CH), Andritz,  |
|                                          | EarthCare Products (USA)                    |
| Screw reactor                            | BTG (NL), Biolake (NL), FoxCoal (NL), Agri- |
|                                          | tech Producers (US)                         |
| Herreshoff oven/ Multiple Hearth Furnace | CMI-NESA (BE), Wyssmont (USA)               |
| Torbed reactor                           | Topell (NL)                                 |

<sup>&</sup>lt;sup>7</sup> J. Koppejan et al, Status overview of torrefaction technology, IEA Bioenergy task 32 report, December 2012



| Microwave reactor  | Rotawave (UK)                               |
|--------------------|---------------------------------------------|
| Compact moving bed | Andritz/ ECN (NL), Thermya (FR), Buhler (D) |
| Belt dryer         | Stramproy (NL), Agri-tech producers (USA)   |
| Fixed bed          | NewEarth Eco Technology (USA)               |

Example processes

Topell Energy's fluid bed technology has reached commercial scale operation. Topell Energy applies a TORBED reactor designed for effective gas/solid contact in various industrial applications. The core of the Topell torrefaction System consists of several TORBED reactors, which have a short retention time and high heat transfer efficiency. During the torrefaction process volatiles are produced ("torgas"). The thermal energy needed for the pre-drying and the torrefaction process is provided by a dual fuel combustor, which burns the torgas and natural gas as a support fuel. The exiting gas from the combustor (the "flue gas") is cooled with several heat exchangers before it is sent to the pre-dryer and torrefaction reactors. The heat exchangers are chosen in such a way that a range of operating conditions (flow and temperature) in the reactors can be chosen. Transport of the various gas streams is done by fans (SECTOR, D3.2, 2014).



Figure 2 Process diagram of TORBED torrefaction plant

The moving bed technology developed by ECN is in demonstration phase at the Andritz demo plant in Denmark. The process is a pressurised, directly heated co-current moving bed reactor utilising conventional drying and pelletisation. The pilot plant incorporates biomass receiving, drying, torrefaction, and pelletising in an integrated system. The torrefaction process blends ECN and ANDRITZ technologies and has been patented. The production capacity of the demonstration plant amounts approximately 1 ton per hour, while focus for commercial plants is on plants with a capacity in excess of 250 000 tons per year (SECTOR D3.2, 2014).



#### Sdr. Stenderup Torrefaction Demo Plant

Simplified Single Line Flowsheet 1 bdmt/h wood chips





### 2.4.2 Applications

Torrefied biomass has several applications. The main application is for co-firing and combustion. The applications are discussed below:

- Co-firing torrefied biomass in large scale power production plants. The market potential of this application is very high. Another option is co-firing in gasification, but this market potential is limited.
- Combustion in industrial, district or residential heating is another application. Boilers, also used for wood pellets or chips burning are available for this application. The market potential is high.
- Gasification to produce syngas/biofuels (there are a number of initiatives on this, i.e. than EU NER300 funded the first commercial large scale demonstration plant to produce syngas ).

#### 2.4.3 Selection for description in database

A stand-alone Torrefaction and Pelletisation Plant (TOP) with a capacity of about 72800 t/a, foreseen as a typical European commercial plant, is selected for description in the database. Since most of data to be presented in the database are identical for both technologies introduced above (the mass and the energy balances of the two technologies included in SECTOR project are practically almost the same and there are no detailed comparable cost figures per technology) a more generic torrefaction concept is described in the database. The chains to be considered are cofiring torrefied biomass in large power plants, combusting in industrial, district or residential heating and gasification to produce syngas/biofuels.

Application



- co-firing in large scale power production plants
- Combustion of torrefied biomass for industrial or residential heating.

# 2.5 Syngas platform (ECN)

#### 2.5.1 Processes

Syngas platform is based on gasification + gas cleaning + fuel synthesis.

- Gasification + upgrading
  - Fischer Tropsch synthesis, FT-diesel
  - Natural gas production
  - Alcohol (methanol, ethanol, and higher alcohols synthesis).

### 2.5.2 Applications

- Diesel, kerosene, petrol production
- Heat and power production
- Gasification

## 2.5.3 Selection for description in database

The following conversion chains have been selected for description in the database:

- Fluidised bed gasification for methanol production
- Fluidised-bed gasification for FT-fuels production
- Indirect gasification for SNG production

# 2.6 Treatment in subcritical water (BTG)

#### 2.6.1 Processes

Biomass can be converted in energy carriers in subcritical water. Water reaches its supercritical point at 374 °C and 218 bar. Two relevant processes in subcritical water are:

- Aqueous Phase Reforming
- Hydro Thermal Upgrading (HTU).

These two processes are further described below.

#### **Aqueous Phase Reforming (APR)**

Virent BioForming<sup>®</sup> technology features catalytic chemistry, which converts plant-based sugars into a full range of hydrocarbon products such as gasoline, diesel, jet fuel, and chemicals for plastics and fibers. The technology is feedstock flexible from conventional sugars as well as a wide variety of cellulosic biomass from non-food sources.







This technology is based on a combination of Aqueous Phase Reforming (APR) technology with catalytic processing. The APR technology was discovered at the University of Wisconsin in 2001 by Virent's co-founder and chief technology officer, Dr. Randy Cortright.

The soluble carbohydrate streams consist of a wide range of molecules and are processed through the aqueous phase reforming step. The aqueous phase reforming step utilizes heterogeneous catalysts at moderate temperatures and pressures to reduce the oxygen content of the carbohydrate feedstock. Some of the reactions in the APR step include:

- 1. reforming to generate hydrogen
- 2. dehydrogenation of alcohols/hydrogenation of carbonyls
- 3. deoxygenation reactions
- 4. hydrogenolysis
- 5. and cyclization.

The product from the APR step is a mixture of chemical intermediates including alcohols, ketones, acids, furans, paraffins and other oxygenated hydrocarbons. Once these intermediate compounds are formed they can undergo further catalytic processing to generate a cost-effective mixture of nonoxygenated hydrocarbons.

The chemical intermediates from the APR step can be reacted over a Virent modified ZSM-5 catalyst to produce a high-octane gasoline blendstock that has a high aromatic content similar to a petroleum-derived reformate stream. Virent has trademarked this product BioFormate<sup>™</sup>.

The chemical intermediates from the APR step can also be converted into distillate range hydrocarbon components through a condensation step followed by conventional hydrotreating.

All of Virent's hydrocarbon products from the BioForming processes are "drop-ins" for petroleum fuels and petrochemicals.





Familiar to Petrochemical Industry Similar Reactor Processing Practices Proven Catalytic Scale-Up Engineering Industry Experience Operating at Scale

#### High Quality Drop-in Products

Premium Hydrocarbon Mixtures Tunable to Produce Desired Blends Adaptable to Provide Chemicals Compatible with Logistics Infrastructure High Energy Conent

#### HTU

Hydro Thermal Upgrading (HTU) is a process to convert biomass into a biocrude. This process takes place at high pressure and temperature. This biocrude is a liquid hydrocarbon and is not directing applicable. Further upgrading is necessary to get end products such as biofuel (diesel) or heat and power. The process flows are given below.



Figure 4: Process flow diagram Hydro Thermal Upgrading<sup>8</sup>.

#### Processes

The HTU process is a thermal process which takes place under the following circumstances:

- Pressure 120-180 bar
- Temperature: 300-350 °C
- Moisture content: optimum 25-30 %



<sup>&</sup>lt;sup>8</sup> Presentation: HTU Diesel from wet waste streams, F. Goudrian, J.E, Naber, Symposium New Biofuels, Berlin, May 2008.



• Reaction time: 5-20 minutes.

As feedstock is required all types of biomass, domestic, agricultural and industrial residues, wood. Also wet feedstock, no drying is required.

The HTU process produces these products (%w on feedstock, dry ash free basis)

- 45% Biocrude
- 25% Gas (> 90% CO<sub>2</sub>, remainder CO)
- 20% H<sub>2</sub>O
- 10% Dissolved organics (e.g., acetic acid, ethanol)

**Biocrude** has the following characteristics:

- Heavy organic liquid, solidifies at 80 °C
- Not miscible with water
- Oxygen content 10 18 %w, H/C = 1.1
- Heating Value (LHV) 30 35 MJ/kg
- Separation into light and heavy fractions by fasting or extraction

#### Applications

Biocrude has these applications:

- Upgrading with hydrogenation to biofuel such as diesel, jet fuel, etc.
- Gasification for syngas. With the water gas shift reaction, hydrogen and carbon dioxide are produced. Besides this, syngas can be used for power and heat generation.

# 2.6.2 Selection for description in database

- Aqueous Phase Reforming is a proven technology to convert clean sugars into biofuels. When lignocellulosic material is used, the sugars have to be extracted first. This technology is selected for description in the database.
- HTU: At this moment, no demonstration or large scale plants are in use or planned for construction. The technology readiness level is not so far at this moment and it not expected that this technology has impact before 2030. From this perspective, this technology is not selected for the database.



# 2.7 Treatment in supercritical water (BTG)

# 2.7.1 Processes

Biomass can be converted in energy carriers (methane, hydrogen, etc.) via a thermal process in supercritical water. Water reaches its supercritical point at 374 °C and 218 bar. Under these conditions, biomass converts into other energy carriers.

Several research institutes and companies are doing research to this technology. Four known institutes/ companies are:

- KIT Verona
- Paul Scherrer Institute (PSI)
- Sparqle
- Gensos
- BTG

**Paul Scherrer Institute (PSI)**<sup>9</sup> has the approach of hydrothermal gasification, developed in the Catalytic Process Engineering (CPE) group, wet biomass, including purpose-grown algae, can be processed efficiently to synthetic natural gas (SNG). The scale-up of this technology is well on the way to be realized in the spin-off company Hydromethan AG together with industrial partners, although many scientific questions still remain to be answered. Due to the extremely tight boundary conditions for an economically feasible energy production process based on biomass, the co-generation of energy and chemicals seems to be a highly attractive pathway, which will be further developed in the laboratory in the next years.

**BTG** has the RSW (Reforming in Supercritical Water) process and consists of a number of unit operation as feed pumping & pressurizing, heat exchanging, reactor, gas-liquid separators and if desired product upgrading. The reactor operating temperature is typically between 600 and 650 °C; the operating pressure is around 300 bar. A residence time of up to 2 minutes is required to achieve complete carbon conversion, depending on the feedstock. Heat exchange between the inlet and outlet streams from the reactor is essential for the process to achieve high thermal efficiency. The two-phase product stream is separated in a high-pressure gas-liquid separator (T = 25 - 300 °C), in which a significant part of the CO<sub>2</sub> remains dissolved in the water phase.



<sup>&</sup>lt;sup>9</sup> <u>http://www.psi.ch/lbk/about-lbk</u>





Figure 5: Schematic overview reforming in superctrical water<sup>10</sup>.

#### Reforming in supercritical water

Possible contaminants like  $H_2S$ ,  $NH_3$  and HCl are likely captured in the water phase due to their higher solubility, and thus in-situ gas cleaning is obtained. The gas from the HP separator contains mainly the  $H_2$ , CO and  $CH_4$  and part of the  $CO_2$ . In a low pressure separator a second gas stream is produced containing relative large amounts of  $CO_2$ , but also some combustibles. This gas can e.g. be used for process heating purposes.

### 2.7.2 Applications

- Hydrogen production
- Synthesis gas production
- Substitute natural gas production
- Methanol production

### 2.7.3 Selection for description in database

Currently, this technology is under development. Several research institutes and companies have pilot plants running. The technology readiness level is low. It is not expected that this technology will be market ready within the coming decade. **Therefore, this technology is not taken for description in the database.** 



<sup>&</sup>lt;sup>10</sup> Reference: <u>www.btgworld.com</u>

# 3. Chemical and biochemical conversion processes

# 3.1 Anaerobic digestion (DLO) of high ligno-cellulose biomass

## 3.1.1 Processes

A very wide range of anaerobic digestion systems exist. Here we focus on systems that can typically be used for digestion of high lignocellulose containing biomass types with or without addition of coproducts such as manure. We focus on the typical systems used in Europe now and in the (near) future.

Introduction to the anaerobic digestion process:

Formulas  $C_6H_{12}O_6 \rightarrow 3CH_4 + 3CO_2$ 

Methanogenesis, etc

| Yield of biogas (Prov | visional data)     |           |
|-----------------------|--------------------|-----------|
| Component (kg)        | Biogas (m3 per kg) | Methane % |
| Protein               | 0,60 - 0,70        | 70-75%    |
| Fat/oil               | 1,00 - 1,25        | 68-73%    |
| Fibre                 | 0,70 - 0,80        | 50-55%    |
| Carbohydrate          | 0,70 - 0,80        | 50-55%    |

Inhibiting aspects

Biogas treatment: H2S removal and biogas upgrading



Introduction to typical systems / classification

Anaerobic digestion technologies:

- Complete mix digester
  - o One stage
  - o Two stage









- Plug flow digester
  - o Peddle wheel digester
  - o ?
- Dry Digestion
  - o Batch
  - Plug flow "Compogas"

All these systems can be operated at ambient (Mesophilic) temperature typically 30–40  $^{\circ}$ C or Thermophilic typically 53–58  $^{\circ}$ C.

# 3.1.2 Applications

Applications of biogas produced:

- CHP (gas engine) producing electricity and heat
- Upgrading biogas to biomethane
  - Biomethane for grid injection
  - o Biomethane for car transport (CNG)
  - Biomethane for trucks (LNG)
- Using biogas in a dedicated biogas grid





## 3.1.3 Selection for description in database

- Complete mix digester
- Plug flow digester
- Dry Digestion

# 3.2 Techniques from pulp and paper industry (VTT)

#### 3.2.1 Processes

Conversion process:

- Pulping in paper industry
  - Kraft pulping based processes
    - Kraft (existing)
    - Kraft with LignoBoost process, (TRL 9)
  - o Sulphite pulping (existing)
  - Soda, soda-oxygen, soda-AQ pulping (existing)
- Pulping in dissolving pulp production
  - Prehydryolysis Kraft processes:
    - autohydrolysis stage done by pre-steaming (existing)
    - autohydrolysis done in water phase (hot water pretreatment) (existing)
  - Sulphite pulping processes (existing)
- Organosolv pulping
  - Organic acid processes
    - Formic acid based Formico (TRL 9) and CIMV (TRL 9)
    - Acetic acid based Acetocell (TRL 7-8)
  - $\circ$   $\;$  Ethanol based Alcell (TRL 9) and its further developed process Lignol
- Ionic liquid-aided fractionation (TRL 3)

### 3.2.2 Applications

- Main products: different pulp products: paper grade pulp, dissolving pulp, NFC, CMC etc.
- Main side products in existing processes:
  - o energy
  - o tall oil and turpentine
  - o lignosulphonates (Sulphite)
  - o vanillin, furfural, xylose etc. (Sulphite)
- Possible side product in the future:
  - lignin (LignoBoost, organosolv processes)
  - hemicelluloses as polymers, monomers, hydroxy acids from (Kraft, sulphite, prehydrolysis Kraft and Organosolv processes)





## 3.2.3 Selection for description in database

- Kraft process with LignoBoost process (TRL 9)
  - In near future LignoBoost process will be built to reduce the CO<sub>2</sub> emissions of the pulp mill by replacing a significant amount of natural gas with dried lignin fired in the lime kilns
  - Separation of the lignin from black liquor for lignin product
- Prehydrolysis Kraft process in water phase (existing)
  - In future there will be possibility to separate hemicelluloses for the valuable intermediate products and chemicals (TRL 4-5).
## 3.3 Pretreatment, hydrolysis and fermentation processes (DLO)<sup>11</sup>

### 3.3.1 Chemical pretreatment processes

To this group belong the pretreatments that are initiated by chemical reactions for disruption of the biomass structure

### • Liquid hot water (TRL 9)

Liquid hot water (LHW) processes are biomass pretreatments with water at high temperature and pressure. Other terms are hydrothermolysis, autohydrolysis, hydrothermal pretreatment, aqueous fractionation, solvolysis or aquasolv. Hot compressed water is in contact with biomass for up to 15 min at temperatures of 200–230 °C. Between 40% and 60% of the total biomass is dissolved in the process, with 4–22% of the cellulose, 35–60% of the lignin and all of the hemicellulose being removed.

**Inbicon** in Denmark produces ethanol from straw by autohydrolysis on demonstration scale. Advantages of this process include the absence of chemicals and the low water use as they operate at high dry matter content (>30 wt%).

<u>Supercritical fluids (CO<sub>2</sub>, water) (TRL 7)</u>

A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases not exist. Supercritical fluid behaves like a liquid with the viscosity of a gas: it can diffuse through solids like a gas and dissolves material like a liquid.

 $CO_2$  and water are the most commonly used supercritical fluids being used for various food and non-food applications.  $CO_2$  becomes supercritical above 31 °C and 73 bar, water above 374 °C and 218 bar.

SC-CO<sub>2</sub> is widely used as an extraction solvent for various applications and is also being considered as possible pretreatment route for lignocellulosic material. SC-water can potentially be applied for decomposition of biomass. The company **Renmatix** is currently commercialising the Plantrose pretreatment technology.

• Dilute acid hydrolysis (TRL 9)

Dilute or weak acid hydrolysis is one of the most effective pretreatment methods for lignocellulosic biomass. In general there are two types of dilute acid hydrolysis:

- 1. High temperature and continuous flow process for low-solids loading (T> 160 °C, 5-10 wt% substrate concentration)
- 2. Low temperature and batch process for high-solids loading (T≤160 °C, 10-40 wt% substrate concentration)

Acid is added to the raw material and the mixture is held at elevated T for short period of time. Hydrolysis of hemicellulose to sugars occurs but also degradation products are formed (strong

 <sup>&</sup>lt;sup>11</sup> Harmsen PFH, Lips S, Bakker RRC, Pretreatment of lignocellulose for biotechnological production of lactic acid; research review, WUR-Food and Biobased Research (2013), Available from: http://edepot.wur.nl/293952.

<sup>•</sup> Harmsen PFH, Huijgen W, Bermudez L, *Literature review of physical and chemical pretreatment processes for lignocellulosic biomass*, WUR-Food and Biobased Research (2010), Available from: http://edepot.wur.nl/150289.



inhibitors to microbial fermentation). Furthermore, acids can be corrosive and neutralization is required (resulting in the formation of solid waste).

Several companies use dilute acid as pretreatment method for fractionation of lignocellulosic biomass. **Blue Sugars** in the US has a demonstration plant for the production of ethanol from sugarcane bagasse. **Cobalt Technologies**, in cooperation with Rhodia and Andritz, are building a demonstration plant in Brazil for the production of butanol from sugarcane bagasse. **POET-DSM** is building at the moment a commercial cellulosic ethanol plant in the US. In Europe the Swedish company **Sekab** is producing ethanol on demonstration scale from softwood, straw and sugarcane bagasse.

• <u>Concentrated acid hydrolysis (TRL 7)</u>

Concentrated acids such as  $H_2SO_4$  and HCl have been widely used for treating lignocellulosic materials because they are powerful agents for cellulose hydrolysis and no enzymes are needed for the production of sugars. Advantages of concentrated acid hydrolysis are the flexibility in terms of feedstock choice, low concentration of inhibitors, high monomeric sugar yield as well as mild temperature conditions that are needed (cooling might be needed). Drawbacks of using concentrated acids are corrosive nature of the reaction and the need to recycle acids in order to lower cost. For recovery of acid used it is essential that the biomass has a high dry matter content, otherwise the biomass stream is too much diluted.

To date, several companies are in the process of commercialising strong acid hydrolysis of lignocellulosic biomass. **Blue Fire Renewables** (US) acquired the rights from Arkenol for the production of sugars and ethanol from biomass. **Virdia** produces sugars from lignocellulosic biomass by using concentrated HCI. Their CASE<sup>™</sup> process is demonstrated at pilot scale at the moment and samples of cellulosic sugars and lignin are being produced for commercial application testing. In Europe the Norwegian company **Weyland** is producing sugars and lignin on pilot scale since 2010. They mainly use wood and agricultural residues as biomass source.

<u>Alkaline hydrolysis (TRL 7)</u>

The major effect of alkaline pretreatment is the removal of lignin from biomass, thereby improving the reactivity of the remaining polysaccharides and decrystallisation of cellulose. As opposed to the acid-catalysed methods, the general principle behind alkaline pretreatment methods is the removal of lignin whereas cellulose and part of the hemicelluloses remain in the solid fraction. The solid fraction is submitted to enzymatic hydrolysis for the production of C6- and C5 sugars and this pretreatment method is especially suitable in combination with fermentation routes in which both C6- and C5-sugars can be converted to products. For alkaline hydrolysis calcium hydroxide, sodium hydroxide or ammonia can be used.

On industrial scale **DuPont Danisco** applies alkaline conditions for their biomass pretreatment. The pilot plant in the US produces ethanol from lignocellulosic biomass (switchgrass, corn cobs, corn stover) by dilute ammonia hydrolysis followed by enzymatic hydrolysis to produce the fermentable sugars. They have plans for production on commercial scale in 2014.

Organosolv (TRL 7-8)

Organosolv processes use an organic solvent or mixtures of organic solvents with water for removal of mainly lignin. Common solvents for the process include ethanol, methanol, acetone, ethylene glycol, formic acid and acetic acid. Temperatures used for the process can be as high as 200 °C, but lower temperatures can be sufficient depending on e.g. the type of biomass and the





use of a catalyst. Removal and recovery of the solvent is required for reducing costs and environmental impact.

Organosolv originates from the pulp and paper industry where it was developed as an alternative for kraft pulping. To date several companies use the organosolv technology for the fractionation of biomass. **Chempolis** in Finland uses a mixture of formic acid and acetic acid in water as pulping liquid. The Formico Biorefinery Technology processes non-wood biomass on demonstration scale. From the cellulose fraction ethanol and paper pulp is obtained, from the hemicellulose fraction ethanol, furfural, acetic acid and formic acid, and the lignin is used to generate power and steam.

Also **CIMV** in France uses formic acid and acetic acid for their organosolv process. The pilot plant is running since 2006 and processes wheat straw into a variety of intermediar products: paper pulp and glucose from cellulose, C5-sugars from hemicellulose, and lignin for the chemical industry (not as fuel).

**Lignol** in Canada uses ethanol as solvent in their Alcell process. Ethanol has a big advantage over other organic solvents as it has a low boiling point and can easily be recovered by distillation. The cellulose and hemicellulose fractions are hydrolysed by enzymes for the production of ethanol and other biochemicals. The high purity lignin is considered as a new class of valuable-added renewable aromatic chemicals. Lignol has a running pilot plant since 2010.

• Oxidative delignification (TRL 8)

Delignification of lignocellulose can be achieved by treatment with an oxidizing agent such as hydrogen peroxide, ozone, oxygen or air. The effectiveness in delignification can be attributed to the high reactivity of oxidizing chemicals with the aromatic ring. However, oxidation might not be very selective, leading to high chemical use and high processing costs.

*Wet oxidation* operates with oxygen or air in combination with water at elevated temperature and pressure. It was presented as an alternative to steam explosion which had become the most widely used pretreatment method. Industrially, wet air oxidation processes have been used for the treatment of wastes with a high organic matter by oxidation of soluble or suspended materials by using oxygen in aqueous phase at high temperatures (150-350 °C) and high pressure (5-20 MPa) [45]. However, high pressure equipment is expensive and continuous operation is difficult.

**BioGasol** in Denmark combines wet oxidation with steam explosion for the production of ethanol from agricultural residues. The process is called 'wet explosion' and the use of oxygen and pressure release at high temperature (170-200 °C) are combined. All by-products are further converted to energy carriers (e.g. ethanol, hydrogen, methane and solid biofuel). A demonstration plant is running in Denmark since 2011.

Room Temperature Ionic Liquids (TRL 4)

Room Temperature Ionic Liquids (RTIL) are salts that are in the liquid phase at temperatures as low as room temperature. There is a vast variety of different RTIL, but they share a common characteristic in that they are usually comprised of an inorganic anion and an organic cation of very heterogeneous molecular structure. The difference in the molecular structure renders the bonding of the ions weak enough for the salt to appear as liquid at room temperature.

As of yet, there is no industrial application employing RTIL. There are indications that mainly due to their polarity and in general their unique properties, they can function as selective solvents of lignin or cellulose. That would result in separation of lignin and increase of cellulose accessibility



under ambient conditions and with no use of acid or alkaline solution. The formation of inhibitor compounds could also be avoided. Despite the potential this method appears to have, there are several uncertainties due to lack of experience. Among the most important ones are the ability to recover the RTIL used, the toxicity of the compounds, and the combination of water with RTIL. In addition, RTIL are expensive solvents and research is done on cheaper alternatives.

### 3.3.2 Explosion pretreatment processes

Explosion processes are characterized by high T and P treatment at short residence times (few minutes). At pressure release the biomass undergoes explosive decompression with hemicellulose degradation and lignin matrix disruption as result. Explosion processes are conducted with water (uncatalysed or catalysed by e.g. sulphuric acid), SO<sub>2</sub>, NH<sub>3</sub> or CO<sub>2</sub>.

<u>H<sub>2</sub>O (TRL 9)</u>

Steam explosion is one of the most applied pretreatment processes owing to its low use of chemicals and limited energy consumption. With this method high-pressure saturated steam is injected into a batch or continuous reactor filled with biomass. During steam injection the temperature rises to 160-260 °C. Subsequently, pressure is suddenly reduced and the biomass undergoes an explosive decompression with hemicellulose degradation and lignin matrix disruption as result.

Steam explosion is by far the most applied pretreatment technology by industrial companies. **Abengoa** (a large ethanol producer from cereals) produces ethanol from wheat straw or corn stover in demonstration plants in Spain and the US by sulphuric acid-catalysed steam explosion. All by-products, including lignin residues, are used for energy applications.

**BetaRenewables** is building a commercial plant in Italy for the production of ethanol from Arundo Donax (giant cane) and wheat straw. The pretreatment applied is uncatalysed steam explosion. Sugars are further converted by SSF to ethanol, and residual lignin is used as energy source. Their technology is called PROESA and is licensed to other companies.

In the US a demonstration plant is operated by **BP Biofuels** for the production of ethanol. The pretreatment is acid-catalysed steam explosion followed by enzymatic hydrolysis (with enzymes provided by Verenium). C5 and C6 sugars are separately fermented to ethanol, and lignin is burned for steam generation.

Another big player is **logen** (a biotech company and enzyme producer) in Canada. The demonstration plant is running since 2004 and produces ethanol from wheat straw. The pretreatment is a 'modified' steam explosion process followed by enzymatic hydrolysis. logen and Shell had plans for commercial activities on this field but the plans were cancelled. Now logen is cooperating with the Raizen Group (producer of sugarcane ethanol) for the development of a cellulosic ethanol plant in Brazil. For this process sugarcane bagasse will be used as biomass source.

• <u>SO<sub>2</sub> (TRL 5)</u>

It is known that impregnation of softwood with SO<sub>2</sub> (sulfur dioxide) prior to steam explosion improves the enzymatic saccharification. Steam explosion pretreatment with SO2 is related to a well-known technology known as sulfite pulping.

<u>NH<sub>3</sub> (TRL 5)</u>







In the AFEX process, biomass is treated with liquid ammonia at high temperature and pressure. After a few seconds, pressure is swiftly reduced. It reduces the lignin content and removes some hemicellulose while decrystallising cellulose. The cost of ammonia and especially of ammonia recovery drives the cost of the pretreatment, although ammonia is easily recovered due to its volatility, but shipping of  $NH_3$  will be costly due to safety reasons.

• <u>CO<sub>2</sub> (TRL 4)</u>

This method is similar to steam and ammonia fibre explosion; high pressure CO2 is injected into the batch reactor and then liberated by an explosive decompression. It is believed that CO2 reacts to carbonic acid ( $H_2CO_3$ , carbon dioxide in water), thereby improving the hydrolysis rate. Yields of CO<sub>2</sub> explosion are in general lower than those obtained with steam or ammonia explosion [23].

### 3.3.3 Biochemical hydrolysis and fermentation processes

To this group belong biochemical processes which make use of enzymes or bacteria to convert pretreated biomass (see previous section) into intermediate products or end products. Together with the pretreatment, hydrolysis and fermentation make up the value chain from biomass to end product.

• Enzymatic hydrolysis (existing)

This process is applied for the conversion of polymeric carbohydrates in biomass (e.g. starch, cellulose, hemicellulose) to monomeric carbohydrates (sugars like glucose or xylose) by the addition of enzymes (e.g. amylase, cellulase, xylanase). This process is also called saccharification.

- Fermentation (existing)
   Fermentation is a metabolic process in which sugars are being converted by bacteria to acids (e.g. lactic acid, succinic acid), gases or alcohols (e.g. ethanol, butanol).
- Simultaneous saccharification and fermentation (SSF) (existing?)
   SSF is a process where enzymatic hydrolysis and fermentation is combined. The enzymatic hydrolysis can be performed simultaneously with the fermentation of glucose and/or xylose in a process referred to as simultaneous saccharification and fermentation (SSF). Besides reduced capital cost, SSF process offers several advantages which include continuous removal of end-products of enzymatic hydrolysis that inhibit enzymes and gives higher product yields.

### 3.3.4 Applications

- Main products: biofuels (*e.g.* ethanol, butanol), chemical building blocks (*e.g.* ethanol, butanol, lactic acid, succinic acid etc)<sup>12</sup>, cellulose pulp
- Main side products in existing processes: energy from lignin-rich residues, hemicelluloses
- Possible side products in the future: lignin and hemicelluloses (polymeric, monomeric) as chemical building blocks.



<sup>&</sup>lt;sup>12</sup> Harmsen PFH, Hackmann MM, Bos HL, Green building blocks for bio-based plastics, *Biofuels, Bioprod Bioref*, **8**(3):306-24 (2014)

### 3.3.5 Selection for description in database

# • Dilute acid hydrolysis and enzymatic hydrolysis for the production of fermentable sugars from lignocellulose<sup>13</sup>

The most extensive, publicly available techno-economic analysis of lignocellulosic biomass pretreatment is the analysis provided by the National Renewable Energy Laboratory<sup>14</sup>. This study analyses the cost of producing bio-ethanol from corn stover in the United States. The study provides good insights in producing fermentable sugars from lignocellulose for fermentation to chemical building blocks like ethanol or lactic acid.

In the table below, data for the production costs of fermentable sugars from corn stover are presented. An important quote from the study states that:

"It should be stressed that the sugar stream produced in this analysis is strictly "imaginary". The purpose of this analysis is merely to separate the cost of producing sugars from the downstream costs of producing ethanol or other products."

| Sugar Production                  | Process Engineering Analy  | rsis          |                                   |                 |
|-----------------------------------|----------------------------|---------------|-----------------------------------|-----------------|
| Corn S                            | Stover Design Report Case: | DW1102A       | 0.7353 Euro/\$                    |                 |
| Dilute Acid Prehy                 | drolysis with Enzymatic Sa | ccharificatio | on                                |                 |
| All val                           | ues in 2007 Euro/In metric | units         |                                   |                 |
|                                   | allia a Daia a             | 0 4077        |                                   |                 |
| Winimum Sugar S                   | elling Price               | 0.1877        | EUR/kg, dilute sugars             |                 |
| Sugar Production                  | (metric ton/Year)          | 412,950       |                                   |                 |
| Sugar yield                       | (kg/metric Ton Feedst      | o 589.5       |                                   |                 |
| Feedstock cost \$/Dry metric 1    | Fon (EUR/Dry metric Ton)   | \$47.42       |                                   |                 |
| Internal Rate of Return (After    | Tax)                       | 10%           |                                   |                 |
| Equity Percent of Total Invest    | ment                       | 40%           |                                   |                 |
|                                   |                            |               |                                   |                 |
| Capital Costs                     |                            |               | Manufacturing cost (Euroc         | ents/ kg sugar) |
| Pretreatment & Conditioning       | g € 24,264,900             |               | Feedstock & Handling              | 8.045           |
| Enzymatic hydrolysis              | € 14,411,880               |               | Sulfuric Acid                     | 0.266           |
| On-site Enzyme Production         | € 13,455,990               |               | Ammonia                           | 0.783           |
| Solids Recovery                   | € 5,367,690                |               | Glucose (Enzyme production)       | 2.101           |
| Wastewater treatment              | € -                        |               | Other Raw Materials               | 0.173           |
| Storage                           | € 1,397,070                |               | Waste Disposal                    | 0.360           |
| Boiler/Turbogenerator             | € 48,529,800               |               | Electricity                       | -1.096          |
| Utilities                         | € 5,073,570                |               | Natural Gas (sugar concentration) | 0.000           |
| Total installed Equipment Co      | ost € 112,427,370          |               | Fixed Costs                       | 1.587           |
|                                   |                            |               | Capital Depreciation              | 1.585           |
| Added costs                       | € 93,383,100               |               | Average Income Tax                | 0.906           |
| (% of TPI)                        | 45%                        | Ś             | Average Return on Investment      | 4.061           |
|                                   |                            |               |                                   |                 |
| Total Project Investment          | € 205,810,470              |               | Manufacturing cost (\$/yr)        |                 |
|                                   |                            |               | Feedstocks & Handling             | € 33,235,560    |
|                                   |                            |               | Sulfuric Acid                     | € 1,102,950     |
| Installed Equipment Cost/Annual   | kg € 0.28                  |               | Ammonia                           | € 3,235,320     |
| Total Project Investment/Annual   | kg € 0.50                  |               | Glucose (Enzyme production)       | € 8,676,540     |
|                                   |                            |               | Other Raw Materials               | € 735.300       |
| Loan Rate                         | 8.0%                       | 5             | Waste Disposal                    | € 1,470,600     |
| Term (vears)                      | 10                         | )             | Electricity                       | € 4.485.330-    |
| Capital Charge factor             | 0.131                      | 1             | Natural Gas (sugar concentration) | € -             |
|                                   |                            |               | Fixed Costs                       | € 6,544.170     |
| Sugar concentration (g/L)         | 127                        | 7             | Capital Depreciation              | € 6,544.170     |
| Energy Efficiency (LHV Efficiency | ency 50.80%                | 6             | Average Income Tax                | € 3,750.030     |
|                                   |                            |               | Average Return on Investment      | € 16,764,840    |
|                                   |                            | -             |                                   |                 |

Cost of producing fermentable sugars from lignocellulose (based on NREL 2011)

<sup>&</sup>lt;sup>13</sup> Harmsen PFH, Lips S, Bakker RRC, *Pretreatment of lignocellulose for biotechnological production of lactic acid; reserach review,* WUR FBR (2012).

<sup>&</sup>lt;sup>14</sup> Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, et al., *Process Design and Economics for Biochemical Conversion of Lignocellulosic biomass to ethanol; dilute-acid pretreatment and enzymatic hydrolysis of corn stover*, NREL (2011).



The costing study is based on a set of assumptions, that each carry an intrinsic variance in their level of confidence. For instance, the plant life is estimated to be 30 years, which can be considered as very optimistic. Furthermore, in the cost analysis for fermentable sugars, the following assumptions and modifications to the ethanol cost study are made:

•Enzymatic hydrolysis is assumed to be carried out in a sterile way and nearly to completion so that a transferable sugar stream is produced

•A lignin press with counter-current washing is added after hydrolysis to separate lignin and unreacted insoluble solids from the dilute mixed sugar stream

•The combustion section for lignin is retained, and an electricity co-product credit is assumed for these solids

•A wastewater cost is kept to account for treatment of the pretreatment flash vapor; however, given that the beer column stillage (from the ethanol model) is not applicable in the sugar model, there is no on-site wastewater facility included. Instead, an operating cost of \$ 0.09/kg COD is applied for disposal of the wastewater material to off-site treatment

•Enzymatic hydrolysis is assumed to achieve 90% cellulose-to-glucose conversion

Data in the table show a minimum selling price for fermentable sugars of 187 €/ton sugars produced from corn stover, in a facility that produces approximately 413 kton of sugars on an annual basis. If the feedstock is assumed to be corn stover, the associated yearly biomass feedstock requirement amounts to 700 kton of corn stover, on a dry matter basis. The data further show that feedstock costs (taken at 47.48 €/ton feedstock price including handling) amounts to 43% of total production costs, whereas capital depreciation and return on investment combined amount to 30% of total production costs. A full distribution of cost components is provided in Figure 8:





It is very important to point out that the cost estimates are for sugars that are contained in <u>diluted form</u> (i.e. they cannot be directly compared to world sugar market price, or other market data), and that it contains a significant concentration of other organic and inorganic components.



### • Fermentation<sup>15</sup>

Fermentation is the conversion of an organic substrate to a product using cell cultures or microorganisms such as bacteria or fungi. The organic substrate is generally a sugar solution. Fermentation can take place in the absence of oxygen (anaerobic) or in the presence of oxygen (aerobic). Well-known examples are fermentation of biomass into biogas, sugar to alcohol and CO2 for the production of wine, beer and bread, and the conversion of lactose to lactic acid for the production of yogurt. Fermentation processes are characterized by the following aspects:

- Process conditions are of great importance. Micro-organisms can handle a certain sugar concentration, and this is different for each per micro-organism. In case of batch processes sugar concentrations are up to 120 g/l. This so-called <u>substrate inhibition</u> (inhibition of the process by the substrate, in this case sugar) can be prevented by dosing the substrate during the fermentation process (fed-batch).
- In addition to substrate inhibition, micro-organisms are also sensitive to the product they produce. Finished products are often more toxic than the substrate, the sugar, so inhibition takes place at lower concentrations. <u>Product inhibition</u> can be avoided by removing product during the fermentation process.
- Finally, other substances in the fermentation medium may hinder fermentation. A well-known example is the presence of acetic acid in the production of ethanol.

| Building block   | Formula | g/mol | # | Theoretical efficiency | Remarks                                       |
|------------------|---------|-------|---|------------------------|-----------------------------------------------|
| Succinic acid    | C4H6O4  | 118   | 2 | 131%                   | >100% by incorporation of $CO_2$ (commercial) |
| Lactic acid      | C3H6O3  | 90    | 2 | 100%                   | Corbion (commercial)                          |
| 3-HPA            | C3H6O3  | 90    | 2 | 100%                   | Novozymes (R&D)                               |
| Propane diol     | C3H8O2  | 76    | 2 | 84%                    | DuPont (Commercial)                           |
| Itaconic acid    | C5H6O4  | 130   | 1 | 72%                    | Commercial                                    |
| Isopropanol      | C3H8O   | 60    | 2 | 67%                    | Mitsui (R&D)                                  |
| Ethanol          | C2H6O   | 46    | 2 | 51%                    | Commercial                                    |
| Butane diol      | C4H10O2 | 90    | 1 | 50%                    | Commercial                                    |
| Methacrylic acid | C4H6O2  | 86    | 1 | 48%                    | Mitsubishi (R&D)                              |
| Isobutanol       | C4H6O2  | 86    | 1 | 48%                    | Gevo (Commercial)                             |
| Butanol          | C4H10O  | 74    | 1 | 41%                    | Cathay (Commercial)                           |
| Isoprene         | C5H8    | 68    | 1 | 38%                    | Ajinomoto (Pilot/R&D)                         |

Chemical building blocks by fermentation of sugars: Theoretical efficiency and industrial activities

<sup>&</sup>lt;sup>15</sup> Harmsen PFH, Lips S, Bos HL, Smit B, Berkum Sv, Helming J, et al., *Suiker als grondstof voor de Nederlandse chemische industrie; gewassen, processen, beleid*, Wageningen UR, FBR en LEI (2014)



Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe

S2Biom Project Grant Agreement n°608622

# **ANNEX II of Deliverable D2.1**

# Classification of biomass properties Draft instructions

# 30.4.2015

Eija Alakangas, VTT















classification of biomass properties - instructions - Annex II of D2.1





## About S2Biom project

The S2Biom project - Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe - supports the sustainable delivery of non-food biomass feedstock at local, regional and pan European level through developing strategies, and roadmaps that will be informed by a "computerized and easy to use" toolset (and respective databases) with updated harmonized datasets at local, regional, national and pan European level for EU28, western Balkans, Turkey and Ukraine. Further information about the project and the partners involved are available under www.s2biom.eu.



## About this document

This report corresponds to Annex I of Deliverable D2.1 of S2Biom. It has been prepared by:

VTT Technical Research Centre of Finland P.O. Box 1603, FI-40101 Jyväskylä, Finland Eija Alakangas E-mail: eija.alakangas@vtt.fi Phone: +358 400 542 454

This project is co-funded by the European Union within the 7th Frame Programme Grant Agreement n°608622. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.





## **Table of contents**

| 1.         | Raw material or fuel requirements for solid biomass                                                       | 3 |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| 2.         | Template for solid biofuel or raw material classification                                                 | 5 |  |  |  |  |
| 3.         | Example of wood chips from logging residues, coniferous                                                   | 6 |  |  |  |  |
| Anr<br>172 | Annex I – Classification of raw material and traded forms according to EN ISO 17225-series (confidential) |   |  |  |  |  |





## 1. Raw material or fuel requirements for solid biomass

Classification of solid biofuels and raw material will be made for each traded form (see Table 2 in Annex I) separately. Fill in tables for each conversion technology, if requirements are different. For examples wood chip for small-scale applications need dried fuel and particle size should be more homogenous and length of oversized particles is smaller than for industrial applications (medium and large scale heating, CHP or power plants). Tables can also be for classification of raw material for pyrolysis oil (e.g. wood chips, hog fuel, sawdust) and thermal treatment e.g. torrefaction (forest residue chips, hog fuel etc.).

Classification of raw material will be divided in the following groups according to EN ISO 17225-1 standard (See Table 1 in Annex I).

- 1. Woody biomass
- 2. Herbaceous biomass
- 3. Fruit biomass
- 4. Aquatic biomass
- 5. Blends and mixtures

The mixing can be either intentional (blends) or unintentional (mixtures).

Examples of blends and mixtures)

- a) Blend; 80w-% sawdust from coniferous (1.2.1.2) and 20w-% reed canary grass (2.1.2.1);
- b) Mixture; whole trees without roots from birch (1.1.1.1), whole trees without roots from spruce (1.1.1.2)

Specification of properties for different traded forms are carried out by the following standards:

- Stem wood/round wood or log wood, EN ISO 17225-1, for industrial use (medium and large scale applications) (Table 6)
- Sawdust, EN ISO 17225-1 (Table 7)
- Shavings, EN ISO 17225-1 (Table 8)
- Bark, EN ISO 17225-1 (Table 9)
- Bales from straw, reed canary grass and Miscanthus, EN ISO 17225-1 (Table 10)
- Energy grain, EN ISO 17225-1 (Table 11)
- Olive residues, EN ISO 17225-1 (Table 12)
- Fruit seeds, EN ISO 17225-1 (Table 13)
- Charcoals for residential use, EN ISO 17225-1 (Table 14)





- Thermally treated biomass, pellets and briquettes under Table 3 and 4, EN ISO 17225-1 (Table 15).
- Wood chips and hog fuel, EN ISO 17225-1, for medium and large scale applications (Table 4) and for residential and commercial applications<sup>1</sup>, EN ISO 17225-4 (Table 20)
- Biopellets for general use including also thermally treated pellets, EN ISO 17225-1 (Table 4) and for residential and commercial applications, EN ISO 17225-2 (Table 17) and wood pellets for industrial use (Table 18)
- Biobriquettes for general use including also thermally treated briquettes, EN ISO 17225-1 (Table 3) and wood briquettes for residential and commercial applications, EN ISO 17225-3 (Table 19)
- Oven-ready firewood for residential and commercial applications, EN ISO 17225-5 (Table 21)
- Non-woody pellets for residential and commercial applications, EN ISO 17225-6 (< 1 MW), Table 22 for blends and mixtures of different agrobiomass, Table 23 for cereal straw, miscanthus and reed canary grass pellets
- Non-wood briquettes residential and commercial applications, EN ISO 17225-7, Table 24
- Other traded forms, EN ISO 17225-1 (Table 16)

Please specify properties listed in the Tables for each traded form. Minimum requirement is to get data of those properties, which are normative (mandatory).

<sup>&</sup>lt;sup>1</sup> commercial application is a facility that utilise solid biofuel burning appliances or equipment that have the similar fuel requirements as residential appliances. Commercial applications should not be confused with industrial applications, which can utilise a much wider array of materials and have vastly different fuel requirements.





# 2. Template for solid biofuel or raw material classification

| De | S2Biom                                                                                 |                             |                 |             | add photo of raw material and traded form                                                                                                                                                                                             |                  |                  |                           |           |
|----|----------------------------------------------------------------------------------------|-----------------------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|---------------------------|-----------|
| Or | igin and so                                                                            | urce                        |                 |             |                                                                                                                                                                                                                                       |                  |                  |                           |           |
| 1  | Raw material                                                                           |                             |                 |             | select from Annex 1 – Table 1                                                                                                                                                                                                         |                  |                  |                           |           |
| 2  | Species of biomas                                                                      | SS                          |                 |             | e.g. spruce, reed                                                                                                                                                                                                                     | d canary grass   | (Latin name      | to be added if            | possible) |
| 3  | Content of lignin, cellulose hemicellulose,<br>min – max, g/kg                         |                             |                 | Lignin      |                                                                                                                                                                                                                                       | Cellulose        | )                | Hemi-<br>sellul<br>ose    |           |
| 4  | Traded form                                                                            |                             |                 |             | select from Anne                                                                                                                                                                                                                      | ex 1 – Table 2   | for solid biofu  | lels                      |           |
| 5  | Conversion techn                                                                       | ology                       |                 |             | select from D2.1                                                                                                                                                                                                                      |                  |                  |                           |           |
| Pr | operty class                                                                           | s requirer                  | nent            | <b>S</b> (a | ccording to Tables                                                                                                                                                                                                                    | s 3 – 24)        |                  |                           |           |
| 6  | Dimensions, L, D                                                                       | or P, mm                    |                 |             | select from appr                                                                                                                                                                                                                      | opriate table fo | or different tra | ded form                  |           |
| 7  | Amount of F, (w-%                                                                      | 6 as received)              |                 |             | Only for wood ch                                                                                                                                                                                                                      | nips, pellets ar | d energy gra     | in                        |           |
| 8  | Ash, A, (w-% of d                                                                      | ry basis)                   |                 |             |                                                                                                                                                                                                                                       |                  |                  |                           |           |
| 9  | Moisture, M, w-%                                                                       |                             |                 |             | select from appr<br>Minimum and m                                                                                                                                                                                                     | opriate table fo | or different tra | ided form                 |           |
| 10 | Bulk density, BD,                                                                      | (ka/m <sup>3</sup> as recei | ved)            |             | for wood chips o                                                                                                                                                                                                                      | r hog fuel       | typical value    |                           |           |
| 11 | Bale density, BD,                                                                      | (kg/m <sup>3</sup> as recei | ved)            |             | for bales                                                                                                                                                                                                                             |                  |                  |                           |           |
| 12 | Particle density, D                                                                    | E (g/cm <sup>3</sup> as rec | eived)          |             | for briquettes                                                                                                                                                                                                                        |                  |                  |                           |           |
| 13 | Net calorific value                                                                    | , dry (MJ/kg)               |                 |             | for all biomass                                                                                                                                                                                                                       |                  |                  |                           |           |
| 14 | Net calorific value                                                                    | as received (M              | lJ/kg)          |             | for all biomass (r                                                                                                                                                                                                                    | minimum requ     | irement)         |                           |           |
| 15 | Mechanical durab                                                                       | ility, DU(%)                |                 |             | for briquettes an                                                                                                                                                                                                                     | d pellets        |                  |                           |           |
| 16 | Fixed carbon, C (                                                                      | w-% of dry basis            | s) <sup>2</sup> |             | only only for thermally treated biomass (e.g. torrefied or steam explosed) and charcoal                                                                                                                                               |                  |                  |                           |           |
| 17 | Volatile matter, VI                                                                    | N, (w-% of dry b            | oasis)          |             | only for thermally treated biomass (e.g. torrefied or steam explosed)                                                                                                                                                                 |                  |                  |                           |           |
| 18 | Ash melting behav                                                                      | vior (DT), °C               |                 |             | It is recommended that all characteristic temperatures (shrinkage<br>starting temperature (SST), deformation temperature (DT),<br>hemisphere temperature (HT) and flow temperature (FT)) in oxidizing<br>conditions should be stated. |                  |                  |                           |           |
| Ch | nemical com                                                                            | position                    | (minimu         | m, m        | aximum and typic                                                                                                                                                                                                                      | al value)        |                  |                           |           |
| 19 | C, w-% dry                                                                             |                             | 20              | Η,          | w-% dry                                                                                                                                                                                                                               |                  | 21               | N, w-%                    |           |
|    | basis                                                                                  |                             |                 | ba          | ISIS                                                                                                                                                                                                                                  |                  |                  | dry basis                 |           |
| 22 | Cl, w-% dry<br>basis                                                                   |                             | 23              | S,          | w-% dry basis                                                                                                                                                                                                                         |                  |                  |                           |           |
| 24 | As, mg/kg dry<br>basis                                                                 |                             | 25              | Co<br>ba    | d, mg/kg dry<br>Isis                                                                                                                                                                                                                  |                  | 26               | Cr,<br>mg/kg<br>dry basis |           |
| 27 | Cu, mg/kg dry<br>basis                                                                 |                             | 28              | Pt<br>ba    | o, mg/kg dry<br>Isis                                                                                                                                                                                                                  |                  | 29               | Hg,<br>mg/kg<br>drv basis |           |
| 30 | Ni, mg/kg dry<br>basis                                                                 |                             | 31              | Zr<br>ba    | n, mg/kg dry<br>Isis                                                                                                                                                                                                                  |                  | 32               | Mg,<br>mg/kg<br>dry basis |           |
| 33 | K, mg/kg dry<br>basis                                                                  |                             | 34              | Na<br>ba    | a, mg/kg dry<br>Isis                                                                                                                                                                                                                  |                  |                  |                           |           |
| Ot | her                                                                                    |                             |                 |             |                                                                                                                                                                                                                                       |                  |                  |                           |           |
| 35 | Torrefaction degree<br>TGA<br>(Thermogravimetr<br>analysis) <sup>3</sup><br>Source: xx | e by<br>ic                  |                 |             |                                                                                                                                                                                                                                       |                  |                  |                           |           |
|    |                                                                                        |                             |                 |             |                                                                                                                                                                                                                                       |                  |                  |                           |           |

<sup>&</sup>lt;sup>2</sup> Fixed carbon (%) is calculated by the following: 100 - [moisture (w-%) + ash (w-%)+volatile matter (w-%)]. All percentages are on the same moisture base.

<sup>&</sup>lt;sup>3</sup> Weight loss at 280-290 °C with residence time of 30 minutes at T> 200°C (% AWL)





# 3. Example of wood chips from logging residues, coniferous

| Q                 | S2Biom                                  |                              |                         |        |                                                                                                                                                 |                    |                     |              |                     |            |               |
|-------------------|-----------------------------------------|------------------------------|-------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------|---------------------|------------|---------------|
| Origin and source |                                         |                              |                         | ういくという |                                                                                                                                                 |                    |                     |              |                     |            |               |
| I                 | Raw material                            |                              |                         |        | residues, c                                                                                                                                     | conifer            | ous, stored         | ielous, lies | 11 01 1.1.4.4 LOG   | ging       |               |
| 2                 | Species of biomas                       | SS                           |                         |        | Norway sp                                                                                                                                       | ruce (             | Picea abies)        |              |                     |            |               |
| 3                 | Content of lignin,<br>min – max, g/kg o | cellulose hemice<br>r w-%    | ellulose                | ,      | Lignin 2                                                                                                                                        | 28 w- <del>7</del> | Cellulos            | se   41 w-   | % Hemi-<br>sellulo  | se         | 24 w-<br>%    |
| 4                 | Traded form                             |                              |                         |        | wood chips                                                                                                                                      | s or ho            | g fuel              |              | •                   |            |               |
| 5                 | 5 Conversion technology                 |                              |                         |        | grate combustion (medium and large scale)<br>Fluidized bed combustion<br>raw material for pyrolysis oil production or thermally treated biomass |                    |                     |              |                     |            |               |
| Pr                | operty class                            | s requiren                   | nent                    | S (a   | according to Table 4)                                                                                                                           |                    |                     |              |                     |            |               |
| 6                 | Dimensions, L. D                        | or P. mm                     |                         | - (-   | Select from Table 4, from P16 to P63.                                                                                                           |                    |                     |              |                     |            |               |
| 7                 | Amount of F. (w-9                       | 6 as received)               |                         |        | for grate combustion amount of fines maximum F25                                                                                                |                    |                     |              |                     |            |               |
| 8                 | Ash, A, (w-% of d                       | ry basis)                    |                         |        | A 1.5 to A3.0                                                                                                                                   |                    |                     |              |                     |            |               |
| 9                 | Moisture, M, w-%                        |                              |                         |        | Minimum and maximum value (M30 to M45), typical value (M40 for seasoned logging residues)                                                       |                    |                     |              |                     |            |               |
| 10                | Bulk density, BD,                       | (kg/m <sup>3</sup> as receiv | /ed)                    |        | BD 250 to BD 300                                                                                                                                |                    |                     |              |                     |            |               |
| 11                | Bale density, BD,                       | (kg/m <sup>3</sup> as receiv | /ed)                    |        | not applicable                                                                                                                                  |                    |                     |              |                     |            |               |
| 12                | Particle density, D                     | DE (g/cm <sup>°</sup> as rec | eived)                  |        | not applicable                                                                                                                                  |                    |                     |              |                     |            |               |
| 13                | Net calorific value                     | , dry (MJ/kg)                | 1/1 \                   |        | 19.00 – 19.30 MJ/kg                                                                                                                             |                    |                     |              |                     |            |               |
| 14                | Net calorific value                     | as received (M               | J/kg)                   |        | 10.00 – 12.40 MJ/kg (depends on moisture content)                                                                                               |                    |                     |              |                     |            |               |
| 15                | Fixed corbon C (                        | mity, DU(%)                  | •)                      |        | not applicable                                                                                                                                  |                    |                     |              |                     |            |               |
| 10                | Volatile matter VI                      | w-/ourury Dasis              | 9<br>2919) <sup>4</sup> |        | 81 – 88 w-                                                                                                                                      | %                  |                     |              |                     |            |               |
| 18                | Ash melting hebe                        | vior (DT) °C                 | asis)                   |        | 1205                                                                                                                                            | /0                 |                     |              |                     |            |               |
| Ch                | emical con                              | nposition                    | (minimur                | m, m   | naximum and                                                                                                                                     | d typica           | al value)           |              |                     |            |               |
| 19                | C, w-% dry<br>basis                     | 51                           | 20                      | H,     | w-% dry                                                                                                                                         | -                  | 6.1                 | 21           | N, w-% dry<br>basis | 0.3<br>(0. | 3 – 0.8<br>5) |
| 22                | Cl, w-% dry                             | <0.01 - 0.06<br>(0.05)       | 23                      | S,     | w-% dry ba                                                                                                                                      | asis               | < 0,02<br>max. 0,05 |              |                     | ,          |               |
| 24                | As, mg/kg dry                           | 1 – 6<br>(< 1)               | 25                      | Co     | d, mg/kg dr                                                                                                                                     | У                  | 0.1 – 0.8           | 26           | Cr, mg/kg           | 0.7        | 7 – 1.2       |
| 27                | Cu, mg/kg dry<br>basis                  | 10 -200                      | 28                      | Pt     | o, mg/kg dr <u>i</u><br>asis                                                                                                                    | у                  | 0.4 - 4.0           | 29           | Hg, mg/kg           | 0.0        | )3            |
| 30                | Ni, mg/kg dry<br>basis                  | 0.4 - 3.0                    | 31                      | Zr     | n, mg/kg dry<br>usis                                                                                                                            | у                  | 8 - 30              | 32           | Mg, mg/kg           | 40         | 0 -<br>)00    |
| 33                | K, mg/kg dry<br>basis                   | 80 - 170                     | 34                      | Na     | a, mg/kg dr<br>asis                                                                                                                             | у                  | 0.4 - 4.0           |              |                     |            |               |
| Sou               | Source: VTT                             |                              |                         |        |                                                                                                                                                 |                    |                     |              |                     |            |               |





# Annex I – Classification of raw material and traded forms according to EN ISO 17225-series (confidential)

| 1. Woody | 1.1 Forest, plantation and | 1.1.1 Whole trees without roots      | 1.1.1.1 Broad-leaf                   |
|----------|----------------------------|--------------------------------------|--------------------------------------|
| biomass  | other virgin wood          |                                      | 1.1.1.2 Coniferous                   |
|          |                            |                                      | 1.1.1.3 Short rotation coppice       |
|          |                            |                                      | 1.1.1.4 Bushes                       |
|          |                            |                                      | 1.1.1.5 Blends and mixtures          |
|          |                            | 1.1.2 Whole trees with roots         | 1.1.2.1 Broad-leaf                   |
|          |                            |                                      | 1.1.2.2 Coniferous                   |
|          |                            |                                      | 1.1.2.3 Short rotation coppice       |
|          |                            |                                      | 1.1.2.4 Bushes                       |
|          |                            |                                      | 1.1.2.5 Blends and mixtures          |
|          |                            | 1.1.3 Stemwood                       | 1.1.3.1 Broad-leaf with bark         |
|          |                            |                                      | 1.1.3.2 Coniferous with bark         |
|          |                            |                                      | 1.1.3.3 Broad-leaf without bark      |
|          |                            |                                      | 1.1.3.4 Coniferous without bark      |
|          |                            |                                      | 1.1.3.5 Blends and mixtures          |
|          |                            | 1.1.4 Logging residues               | 1.1.4.1 Fresh/Green, Broad-leaf      |
|          |                            |                                      | (including leaves)                   |
|          |                            |                                      | 1.1.4.2 Fresh/Green, Coniferous      |
|          |                            |                                      | (including needles)                  |
|          |                            |                                      | 1.1.4.3 Stored, Broad-leaf           |
|          |                            |                                      | 1.1.4.4 Stored, Coniferous           |
|          |                            |                                      | 1.1.4.5 Blends and mixtures          |
|          |                            | 1.1.5 Stumps/roots                   | 1.1.5.1 Broad-leaf                   |
|          |                            |                                      | 1.1.5.2 Coniferous                   |
|          |                            |                                      | 1.1.5.3 Short rotation coppice       |
|          |                            |                                      | 1.1.5.4 Bushes                       |
|          |                            |                                      | 1.1.5.5 Blends and mixtures          |
|          |                            | 1.1.6 Bark (from forestry operation  | าร)                                  |
|          |                            | 1.1.7 Segregated wood from gard      | ens, parks, roadside maintenance,    |
|          |                            | vineyards, fruit orchards and drifty | vood from freshwater                 |
|          |                            | 1.1.8 Blends and mixtures            | · · · · · · · · · ·                  |
|          | 1.2 By-products and        | 1.2.1 Chemically untreated           | 1.2.1.1 Broad-leaf with bark         |
|          | residues from wood         | wood by-products and residues        | 1.2.1.2 Coniferous with bark         |
|          | processing industry        |                                      | 1.2.1.3 Broad-leaf without bark      |
|          |                            |                                      | 1.2.1.4 Coniferous without bark      |
|          |                            |                                      | 1.2.1.5 Bark (from industry          |
|          |                            |                                      | operations)                          |
|          |                            | 1.2.2 Chemically treated wood        | 1.2.2.1 Without bark                 |
|          |                            | by-products, residues, fibres and    | 1.2.2.2 With bark                    |
|          |                            | wood constituents                    | 1.2.2.3 Bark (from industry          |
|          |                            |                                      | operations)                          |
|          |                            |                                      | 1.2.2.4 Fibres and wood constituents |
|          |                            | 1.2.3 Blends and mixtures            |                                      |

## Table 1 — Classification of origin and sources of solid biofuels





| 1.3 Used wood           | 1.3.1 Chemically untreated used | 1.3.1.1 Without bark |
|-------------------------|---------------------------------|----------------------|
|                         | wood                            | 1.3.1.2 With bark    |
|                         |                                 | 1.3.1.3 Bark         |
|                         | 1.3.2 Chemically treated used   | 1.3.2.1 Without bark |
|                         | wood                            | 1.3.2.2 With bark    |
|                         |                                 | 1.3.2.3 Bark         |
|                         | 1.3.3 Blends and mixtures       |                      |
| 1.4 Blends and mixtures |                                 |                      |

NOTE 1 If appropriate, also the actual species (e.g. spruce, wheat) of biomass may be stated according to EN 13556, *Round and sawn timber — Nomenclature of timbers used in Europe*<sup>[1]</sup>.

NOTE 2 Driftwood from saltwater is not recommended as a fuel.

| 2. Herbaceous | 2.1 Herbaceous biomass  | 2.1.1 Cereal crops                  | 2.1.1.1 Whole plant                         |
|---------------|-------------------------|-------------------------------------|---------------------------------------------|
| biomass       | from agriculture and    |                                     | 2.1.1.2 Straw parts                         |
|               | horticulture            |                                     | 2.1.1.3 Grains or seeds                     |
|               |                         |                                     | 2.1.1.4 Husks or shells                     |
|               |                         |                                     | 2.1.1.5 Blends and mixtures                 |
|               |                         | 2.1.2 Grasses                       | 2.1.2.1 Whole plant                         |
|               |                         |                                     | 2.1.2.2 Straw parts                         |
|               |                         |                                     | 2.1.2.3 Seeds                               |
|               |                         |                                     | 2.1.2.4 Shells                              |
|               |                         |                                     | 2.1.2.5 Bamboo                              |
|               |                         |                                     | 2.1.2.6 Blends and mixtures                 |
|               |                         | 2.1.3 Oil seed crops                | 2.1.3.1 Whole plant                         |
|               |                         |                                     | 2.1.3.2 Stalks and leaves                   |
|               |                         |                                     | 2.1.3.3 Seeds                               |
|               |                         |                                     | 2.1.3.4 Husks or shells                     |
|               |                         |                                     | 2.1.3.5 Blends and mixtures                 |
|               |                         | 2.1.4 Root crops                    | 2.1.4.1 Whole plant                         |
|               |                         |                                     | 2 1 4 2 Stalks and leaves                   |
|               |                         |                                     | 2 1 4 3 Root                                |
|               |                         |                                     | 2.1.4.4 Blends and mixtures                 |
|               |                         | 215Legume crops                     | 2151 Whole plant                            |
|               |                         | 2.1.0 Logano oropo                  | 2152 Stalks and leaves                      |
|               |                         |                                     | 2.1.5.2 Otanto and leaves                   |
|               |                         |                                     | 2154 Pods                                   |
|               |                         |                                     | 2.1.5.4 Pous<br>2.1.5.5 Blends and mixtures |
|               |                         | 216 Elowers                         | 2 1 6 1 Whole plant                         |
|               |                         | 2.1.01100010                        | 2.1.6.2 Stalks and leaves                   |
|               |                         |                                     | 2 1 6 3 Seeds                               |
|               |                         |                                     | 2.1.6.4 Blends and mixtures                 |
|               |                         | 2 1 7 Segregated herbaceous bior    | mass from gardens, parks, roadside          |
|               |                         | maintenance, vinevards and fruit of | orchards                                    |
|               |                         | 2.1.8 Blends and mixtures           |                                             |
|               | 2.2 By-products and     | 2.2.1 Chemically untreated          | 2.2.1.1 Cereal crops and grasses            |
|               | residues from food and  | herbaceous residues                 | 2.2.1.2 Oil seed crops                      |
|               | herbaceous processing   |                                     | 2.2.1.3 Root crops                          |
|               | industry                |                                     | 2.2.1.4 Legume crops                        |
|               | 5                       |                                     | 2215 Elowers                                |
|               |                         |                                     | 2.2.1.6 Blends and mixtures                 |
|               |                         | 2 2 2 Chemically treated            | 2 2 2 1 Cereal crops and grasses            |
|               |                         | herbaceous residues                 | 2 2 2 2 Oil seed crops                      |
|               |                         |                                     | 2.2.2.3 Root crops                          |
|               |                         |                                     | 2 2 2 4 Legume crops                        |
|               |                         |                                     | 2225 Flowers                                |
|               |                         |                                     | 2 2 2 6 Blends and mixtures                 |
|               |                         | 2 2 3 Blends and mixtures           |                                             |
|               | 2.3 Blends and mixtures |                                     |                                             |
|               |                         |                                     |                                             |

### Table 1 — (continued)





| 3. Fruit biomass                                  | 3.1 Orchard and                                                                                                                                                                                                                                        | 3.1.1 Berries                                                                                                                                                                                                                                                                                                                            | 3.1.1.1 Whole berries                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | horticulture fruit                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          | 3112 Elesh                                                                                                                                                                                                                                                                                                                 |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3113 Seeds                                                                                                                                                                                                                                                                                                                 |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.1.1.4 Blends and mixtures                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                                        | 3.1.2 Stone/kernel fruits                                                                                                                                                                                                                                                                                                                | 3.1.2.1 Whole fruit                                                                                                                                                                                                                                                                                                        |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.1.2.2 Flesh                                                                                                                                                                                                                                                                                                              |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.1.2.3 Stone/kernel/fruit fibre                                                                                                                                                                                                                                                                                           |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.1.2.4 Blends and mixtures                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                                        | 3.1.3 Nuts and acorns                                                                                                                                                                                                                                                                                                                    | 3.1.3.1 Whole nuts                                                                                                                                                                                                                                                                                                         |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.1.3.2 Shells/husks                                                                                                                                                                                                                                                                                                       |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.1.3.3 Kernels                                                                                                                                                                                                                                                                                                            |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.1.3.4 Blends and mixtures                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                                        | 3.1.4 Blends and mixtures                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |
|                                                   | 3.2 By-products and                                                                                                                                                                                                                                    | 3.2.1 Chemically untreated fruit                                                                                                                                                                                                                                                                                                         | 3.2.1.1 Berries                                                                                                                                                                                                                                                                                                            |
|                                                   | residues from food and                                                                                                                                                                                                                                 | residues                                                                                                                                                                                                                                                                                                                                 | 3.2.1.2 Stone/kernel fruits/fruit fibre                                                                                                                                                                                                                                                                                    |
|                                                   | fruit processing industry                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                          | 3.2.1.3 Nuts and acorns                                                                                                                                                                                                                                                                                                    |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.2.1.4 Crude olive cake                                                                                                                                                                                                                                                                                                   |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.2.1.5 Blends and mixtures                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                                        | 3.2.2 Chemically treated fruit                                                                                                                                                                                                                                                                                                           | 3.2.2.1 Berries                                                                                                                                                                                                                                                                                                            |
|                                                   |                                                                                                                                                                                                                                                        | residues                                                                                                                                                                                                                                                                                                                                 | 3.2.2.2 Stone/kernel fruits                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.2.2.3 Nuts and acorns                                                                                                                                                                                                                                                                                                    |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.2.2.4 Exhausted olive cake                                                                                                                                                                                                                                                                                               |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 3.2.2.5 Blends and mixtures                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                                        | 3.2.3 Blends and mixtures                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |
|                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
|                                                   | 3.3 Blends and mixtures                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
| 4. Aquatic                                        | 3.3 Blends and mixtures<br>4.1 Algae                                                                                                                                                                                                                   | 4.1.1 Micro algae (latin name to b                                                                                                                                                                                                                                                                                                       | be stated)                                                                                                                                                                                                                                                                                                                 |
| 4. Aquatic<br>biomass                             | <ul><li>3.3 Blends and mixtures</li><li>4.1 Algae</li></ul>                                                                                                                                                                                            | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to                                                                                                                                                                                                                                                                   | be stated)<br>be stated)                                                                                                                                                                                                                                                                                                   |
| 4. Aquatic<br>biomass                             | <ul><li>3.3 Blends and mixtures</li><li>4.1 Algae</li></ul>                                                                                                                                                                                            | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures                                                                                                                                                                                                                                      | be stated)<br>be stated)                                                                                                                                                                                                                                                                                                   |
| 4. Aquatic<br>biomass                             | <ul><li>3.3 Blends and mixtures</li><li>4.1 Algae</li><li>4.2 Water hyacinth</li></ul>                                                                                                                                                                 | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures                                                                                                                                                                                                                                      | be stated)                                                                                                                                                                                                                                                                                                                 |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to be                                                                                                                                                                                                 | e stated)                                                                                                                                                                                                                                                                                                                  |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be                                                                                                                                                                                                                                                          |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)                                                                                                                                                                                                                                               |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)                                                                                                                                                                                        |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to bo<br>4.3.2 Sea weed                                                                                                                                                                               | e stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.2 Blue groop sea wood (latin                                                                                                                                                  |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)                                                                                                                            |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to                                                                                   |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)                                                                     |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be                           |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>be stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be<br>stated)               |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> </ul>                                                                                                                              | 4.1.1 Micro algae (latin name to b<br>4.1.2 Macro algae (latin name to<br>4.1.3 Blends and mixtures<br>4.3.1 Lake weed (latin name to b<br>4.3.2 Sea weed                                                                                                                                                                                | e stated)<br>be stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be<br>stated)               |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> <li>4.4 Reeds</li> </ul>                                                                                                           | 4.1.1 Micro algae (latin name to b         4.1.2 Macro algae (latin name to         4.1.3 Blends and mixtures         4.3.1 Lake weed (latin name to b)         4.3.2 Sea weed         4.3.3 Blends and mixtures         4.3.3 Blends and mixtures         4.3.4 Common reed                                                             | be stated)<br>be stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be<br>stated)              |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> <li>4.4 Reeds</li> </ul>                                                                                                           | 4.1.1 Micro algae (latin name to b         4.1.2 Macro algae (latin name to b         4.1.3 Blends and mixtures         4.3.1 Lake weed (latin name to b         4.3.2 Sea weed         4.3.3 Blends and mixtures         4.3.3 Blends and mixtures         4.4.1 Common reed         4.4.2 Other reed                                   | be stated)<br>be stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be<br>stated)              |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> <li>4.4 Reeds</li> </ul>                                                                                                           | 4.1.1 Micro algae (latin name to b         4.1.2 Macro algae (latin name to b         4.1.3 Blends and mixtures         4.3.1 Lake weed (latin name to b         4.3.2 Sea weed         4.3.3 Blends and mixtures         4.3.3 Blends and mixtures         4.4.1 Common reed         4.4.2 Other reed         4.4.3 Blends and mixtures | be stated)<br>be stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be<br>stated)              |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> <li>4.4 Reeds</li> <li>4.5 Blends and mixtures</li> </ul>                                                                          | 4.1.1 Micro algae (latin name to b         4.1.2 Macro algae (latin name to b         4.1.3 Blends and mixtures         4.3.1 Lake weed (latin name to b         4.3.2 Sea weed         4.3.3 Blends and mixtures         4.3.3 Blends and mixtures         4.4.1 Common reed         4.4.2 Other reed         4.4.3 Blends and mixtures | be stated)<br>be stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be<br>stated)              |
| 4. Aquatic<br>biomass                             | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> <li>4.4 Reeds</li> <li>4.5 Blends and mixtures</li> <li>5.1 Blends</li> </ul>                                                      | 4.1.1 Micro algae (latin name to b         4.1.2 Macro algae (latin name to b         4.1.3 Blends and mixtures         4.3.1 Lake weed (latin name to b         4.3.2 Sea weed         4.3.3 Blends and mixtures         4.4.1 Common reed         4.4.2 Other reed         4.4.3 Blends and mixtures                                   | be stated)<br>be stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be<br>stated) |
| 4. Aquatic<br>biomass<br>5 Blends and<br>mixtures | <ul> <li>3.3 Blends and mixtures</li> <li>4.1 Algae</li> <li>4.2 Water hyacinth</li> <li>4.3 Lake and sea weed</li> <li>4.3 Lake and sea weed</li> <li>4.4 Reeds</li> <li>4.5 Blends and mixtures</li> <li>5.1 Blends</li> <li>5.2 Mixtures</li> </ul> | 4.1.1 Micro algae (latin name to b         4.1.2 Macro algae (latin name to b         4.1.3 Blends and mixtures         4.3.1 Lake weed (latin name to b         4.3.2 Sea weed         4.3.3 Blends and mixtures         4.4.1 Common reed         4.4.2 Other reed         4.4.3 Blends and mixtures                                   | be stated)<br>be stated)<br>e stated)<br>4.3.2.1 Blue sea weed (latin name to be<br>stated)<br>4.3.2.2 Green sea weed (latin name to<br>be stated)<br>4.3.2.3 Blue-green sea weed (latin<br>name to be stated)<br>4.3.2.4 Brown sea weed (latin name to<br>be stated)<br>4.3.2.5 Red sea weed (latin name to be<br>stated) |

## Table 1 — (continued)

NOTE 3 Group 5 "Blends and mixtures" include blends and mixtures from the main origin-based solid biofuel groups 1 to 4.





### Table 2 — Major traded forms and raw materials of solid biofuels

| Fuel name                                                      | Typical particle size                                          | Common preparation method                                                                                         |
|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Whole tree                                                     | > 500 mm                                                       | No preparation or delimbed                                                                                        |
| Wood chips                                                     | 5 mm to 100 mm                                                 | Cutting with sharp tools                                                                                          |
| Hog fuel                                                       | Varying                                                        | Crushing with blunt tools                                                                                         |
| Stemwood/roundwood                                             | > 100 cm                                                       | Cutting with sharp tools                                                                                          |
| Logwood                                                        | 50 cm to 100 cm                                                | Cutting with sharp tools                                                                                          |
| Firewood                                                       | 5 cm to 100 cm                                                 | Cutting with sharp tools                                                                                          |
| Slabs and offcuts                                              | Varying                                                        | Cutting with sharp tools                                                                                          |
| Bark                                                           | Varying                                                        | Debarking residue from trees (shredded or unshredded)                                                             |
| Bundle (e.g. logging residue bundles)                          | Varying                                                        | Lengthwise oriented & bound                                                                                       |
| Fuel powder                                                    | < 1 mm                                                         | Milling                                                                                                           |
| Sawdust                                                        | 1 mm to 5 mm                                                   | Cutting with sharp tools                                                                                          |
| Shavings                                                       | 1 mm to 30mm                                                   | Planing with sharp tools                                                                                          |
| Briquettes                                                     | Ø > 25 mm                                                      | Mechanical compression                                                                                            |
| Pellets                                                        | Ø ≤ 25 mm                                                      | Mechanical compression                                                                                            |
| Bales<br>Small square bales<br>Big square bales<br>Round bales | 0,1 m <sup>3</sup><br>3,7 m <sup>3</sup><br>2,1 m <sup>3</sup> | Compressed and bound to squares<br>Compressed and bound to squares<br>Compressed and bound to cylinders           |
| Chopped straw or energy grass                                  | 10 mm to 200 mm                                                | Chopped during harvesting or before combustion                                                                    |
| Grain or seed                                                  | Varying                                                        | No preparation or drying except for process<br>operations necessary for storage for cereal grain                  |
| Fruit stones or kernel                                         | 5 mm to 15 mm                                                  | No preparation or pressing and extraction by chemicals.                                                           |
| Fibre cake                                                     | Varying                                                        | Prepared from fibrous waste by dewatering                                                                         |
| Charcoal                                                       | Varying                                                        | Charcoal is prepared by the destructive distillation and pyrolysis of biomass.                                    |
| Thermally treated biomass (e.g. torrefied or steam explosed)   | Varying                                                        | Mild pre-treatment of biomass at a temperature<br>between 200-300 °C for a short time period (e.g. 60<br>minutes) |

NOTE 1 Also other forms may be used.





## Table 3 — Specification of properties for briquettes (EN ISO 17225-1)

|                                                                | Master table                                                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                | Origin: According to 6.1 and Table 1                                                                                                                                     |                                                    | Woody biomass (1);<br>Herbaceous biomass (2);<br>Fruit biomass (3);<br>Aquatic biomass (4);<br>Blends and mixtures (5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                | Traded Form (see Table 2)                                                                                                                                                |                                                    | Briquette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                | Dimensions (                                                                                                                                                             | nm)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | Diameter (D) a                                                                                                                                                           | and Length (L)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | Diameter, height, width and length to be stated L <sub>1</sub> length, L <sub>2</sub> width, L <sub>3</sub> height Specify shape according to Figure 2 e.g. 1 or 2, etc. |                                                    | $D = \begin{bmatrix} 0 \\ L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_4 \\ L_4 \\ L_5 \\ L_6 \\ L_7 \\ $ |  |  |  |
|                                                                |                                                                                                                                                                          |                                                    | $L_{1} \qquad L_{2} \qquad L_{1} \qquad 0 \qquad D$ $L_{1} \qquad 0 \qquad D$ $L_{1} \qquad 0 \qquad D$ $L_{2} \qquad 0 \qquad D$ $L_{3} \qquad 0 \qquad D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                |                                                                                                                                                                          |                                                    | <i>L</i> Length <i>D</i> Diameter<br>Figure 2 — Examples of briquettes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                | Moisture, M (v                                                                                                                                                           | v-% as received) ISO 18134-1, ISO 1813             | 4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                | M10                                                                                                                                                                      | ≤ 10 %                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | M12                                                                                                                                                                      | ≤ <b>12 %</b>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| < e                                                            | M15                                                                                                                                                                      | ≤ 15 %                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| ati                                                            | Ash, A (w-% o                                                                                                                                                            | f dry basis) ISO 18122                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| ε                                                              | A0.5                                                                                                                                                                     | ≤ <b>0,5 %</b>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 0                                                              | A0.7                                                                                                                                                                     | $\leq$ 0,7 %                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| z                                                              | A1.0                                                                                                                                                                     | ≤ 1,0 %                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | A1.5                                                                                                                                                                     | ≤ 1,5 %                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | A2.0                                                                                                                                                                     | ≤ 2,0 %                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | A3.0                                                                                                                                                                     | ≤ 3,0 %                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | A5.0                                                                                                                                                                     | ≤ 5,0 %                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | A10.0                                                                                                                                                                    | ≤ 7,0 %<br>< 10.0 %                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | A10.0+                                                                                                                                                                   | > 10.0 % (maximum value to be stated)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Particle density, DE (g/cm <sup>3</sup> as received) ISO 18847 |                                                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | DE0.8                                                                                                                                                                    | ≥ 0.8 a/cm <sup>3</sup>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | DE0.9                                                                                                                                                                    | $\geq 0.9 \text{ g/cm}^3$                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | DE1.0                                                                                                                                                                    | $\geq$ 1,0 g/cm <sup>3</sup>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | DE1.1                                                                                                                                                                    | ≥ 1,1 g/cm <sup>3</sup>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | DE1.2+                                                                                                                                                                   | > 1,2 g/cm <sup>3</sup> (maximum value to be state | ed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                | Additives <sup>a</sup> (w                                                                                                                                                | -% of pressing mass)                               | Type and content of pressing aids, slagging inhibitors or any other additives have to be stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                | Net calorific v<br>ISO 18125                                                                                                                                             | alue, Q (MJ/kg or kWh/kg as received)              | Minimum value to be stated <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |





|                                            | Mechanical durability, DU (w-% of briquettes after testing) ISO 17831-2                                                                                                                                                                                                                                                                                   |                                                         |                                                               |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|--|--|--|
|                                            | DU95.0                                                                                                                                                                                                                                                                                                                                                    | ≥ 95,0 %                                                | Informative:                                                  |  |  |  |
|                                            | DU90.0                                                                                                                                                                                                                                                                                                                                                    | ≥ 90,0 %                                                | only if traded in bulk                                        |  |  |  |
|                                            | DU90.0-                                                                                                                                                                                                                                                                                                                                                   | < 90,0 % (minimum value to be stated)                   |                                                               |  |  |  |
|                                            | Nitrogen, N                                                                                                                                                                                                                                                                                                                                               | (w-% of dry basis) ISO 16948                            |                                                               |  |  |  |
|                                            | N0.2                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,2 %                                                 | Normative:                                                    |  |  |  |
|                                            | N0.3                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,3 %                                                 | Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2)       |  |  |  |
|                                            | N0.5                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,5 %                                                 | Informative:                                                  |  |  |  |
|                                            | N0.7                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,7 %                                                 | All fuels that are not chemically treated (see the exceptions |  |  |  |
|                                            | N1.0                                                                                                                                                                                                                                                                                                                                                      | ≤ 1,0 %                                                 | above)                                                        |  |  |  |
|                                            | N1.5                                                                                                                                                                                                                                                                                                                                                      | ≤ 1,5 %                                                 |                                                               |  |  |  |
|                                            | N2.0                                                                                                                                                                                                                                                                                                                                                      | ≤ <b>2</b> , <b>0</b> %                                 |                                                               |  |  |  |
|                                            | N3.0                                                                                                                                                                                                                                                                                                                                                      | ≤ <b>3</b> , <b>0</b> %                                 |                                                               |  |  |  |
| Ð                                          | N3.0+ >3,0 % (maximum value to be stated)                                                                                                                                                                                                                                                                                                                 |                                                         |                                                               |  |  |  |
| tive                                       | Sulphur, S                                                                                                                                                                                                                                                                                                                                                | (w-% of dry basis) ISO 16994                            |                                                               |  |  |  |
| ma                                         | S0.02                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,02 %                                                | Normative:                                                    |  |  |  |
| for                                        | S0.03                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,03 %                                                | Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2) or if |  |  |  |
| / in                                       | S0.04                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,04 %                                                | sulphur containing additives have been used.                  |  |  |  |
| /e /                                       | S0.05                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,05 %                                                | Informative:                                                  |  |  |  |
| ativ                                       | S0.08                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,08 %                                                | All fuels that are not chemically treated (see the exceptions |  |  |  |
| rm                                         | S0.10                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,10 %                                                | above)                                                        |  |  |  |
| No                                         | S0.20                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,20 %                                                |                                                               |  |  |  |
| _                                          | S0.20+                                                                                                                                                                                                                                                                                                                                                    | > 0,20 % (maximum value to be stated)                   |                                                               |  |  |  |
|                                            | Chlorine, Cl (w-% of dry basis) ISO 16994                                                                                                                                                                                                                                                                                                                 |                                                         |                                                               |  |  |  |
|                                            | Cl0.01                                                                                                                                                                                                                                                                                                                                                    | ≤ 0,01 %                                                | Normative:                                                    |  |  |  |
|                                            | Cl0.02                                                                                                                                                                                                                                                                                                                                                    | ≤ 0,02 %                                                | Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2)       |  |  |  |
|                                            | Cl0.03                                                                                                                                                                                                                                                                                                                                                    | ≤ 0,03 %                                                | Informative:                                                  |  |  |  |
|                                            | Cl0.07                                                                                                                                                                                                                                                                                                                                                    | ≤ 0,07 %                                                | All fuels that are not chemically treated (see the exceptions |  |  |  |
|                                            | Cl0.10                                                                                                                                                                                                                                                                                                                                                    | ≤ 0,10 %                                                | above)                                                        |  |  |  |
|                                            | Cl0.20                                                                                                                                                                                                                                                                                                                                                    | ≤ 0,20 %                                                |                                                               |  |  |  |
|                                            | CI0.30                                                                                                                                                                                                                                                                                                                                                    | ≤ 0,30 %                                                |                                                               |  |  |  |
|                                            | Cl0.30+                                                                                                                                                                                                                                                                                                                                                   | > 0,30 % (maximum value to be stated)                   |                                                               |  |  |  |
|                                            | Fixed carbo                                                                                                                                                                                                                                                                                                                                               | on, C <sup>c</sup> (w-% of dry basis)                   |                                                               |  |  |  |
|                                            | Minimum va                                                                                                                                                                                                                                                                                                                                                | lue to be stated                                        | Normative only for thermally treated biomass briquettes       |  |  |  |
|                                            | Volatile ma                                                                                                                                                                                                                                                                                                                                               | tter, VM (w-% of dry basis) ISO 18123                   |                                                               |  |  |  |
|                                            | Maximum va                                                                                                                                                                                                                                                                                                                                                | alue to be stated                                       | Normative only for thermally treated biomass briquettes       |  |  |  |
| Info                                       | ormative:                                                                                                                                                                                                                                                                                                                                                 |                                                         |                                                               |  |  |  |
| Ash                                        | n melting bel                                                                                                                                                                                                                                                                                                                                             | naviour <sup>°</sup> (°C) CEN/TS 15370-1 <sup>[4]</sup> | Should be stated                                              |  |  |  |
| <sup>a</sup> The<br>veg<br><sup>b</sup> Mi | <sup>a</sup> The maximum amount of additive is 20 w-% of pressing mass. Type stated as chemical substance (e.g. starch, corn flour, potato flour, vegetable oil, lignin). If amount is greater, then raw material for briquette is blend. <sup>b</sup> Minimum value for torrefied or other thermally treated biomass briquettes are usually > 18 M.I/kg. |                                                         |                                                               |  |  |  |

<sup>c</sup> Fixed carbon (%) is calculated by the following: 100 – [moisture (w-%) + ash (w-%) + volatile matter (w-%)]. All percentages are on the same moisture basis.

<sup>d</sup> Special attention should be paid to the ash melting behaviour for some biomass fuels, for example eucalyptus, poplar, short rotation coppice, straw, miscanthus and olive stone. It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated

NOTE 5 Thermally treated biomass briquettes (e.g. torrefied briquettes) are also included in Table 3.





## Table 4 — Specification of properties for pellets (EN ISO 17225-1)

|          | Master table                                                                                                                                  |                                                                                |                                                            |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
|          | Origin:                                                                                                                                       |                                                                                | Woody biomass (1); Herbaceous biomass (2); Fruit           |  |  |  |
|          | According to                                                                                                                                  | o 6.1 and Table 1                                                              | biomass (3); Aquatic biomass (4); Blends and mixtures (5). |  |  |  |
|          | Traded For                                                                                                                                    | m (see Table 2)                                                                | Pellets                                                    |  |  |  |
|          | Dimension                                                                                                                                     | <b>s</b> (mm) ISO 17829                                                        |                                                            |  |  |  |
|          | Diameter ()                                                                                                                                   | D) and Length (L) <sup>a</sup>                                                 |                                                            |  |  |  |
|          | D06                                                                                                                                           | $6 \text{ mm} + 1.0 \text{ mm}$ and $3.15 \text{ mm} < 1 \le 40 \text{ mm}$    |                                                            |  |  |  |
|          | D08                                                                                                                                           | $8 \text{ mm} \pm 1.0 \text{ mm}$ and $3.15 \text{ mm} < 1 < 40 \text{ mm}$    | $\mathbf{D}$                                               |  |  |  |
|          | D00                                                                                                                                           | $10 \text{ mm} \pm 1.0 \text{ mm}$ and $3,10 \text{ mm} < 1.5 \text{ mm}$      |                                                            |  |  |  |
|          | D10                                                                                                                                           | 10 mm $\pm$ 1,0 mm and 3,15 mm < L $\leq$ 40 mm                                |                                                            |  |  |  |
|          | DIZ                                                                                                                                           | $12 \text{ mm} \pm 1.0 \text{ mm}$ and $3.15 \text{ mm} < L \le 50 \text{ mm}$ | Figure 3 — Dimensions (mm)                                 |  |  |  |
|          | D25                                                                                                                                           | $25 \text{ mm} \pm 1,0 \text{ mm}$ , and $10 \text{ mm} < L \le 50 \text{ mm}$ |                                                            |  |  |  |
|          | Moisture, N                                                                                                                                   | (w-% as received) ISO 18134-1, ISO 18134-                                      | 2                                                          |  |  |  |
|          | M05                                                                                                                                           | ≤ 5 %                                                                          |                                                            |  |  |  |
|          | M08                                                                                                                                           | ≤ 8 %                                                                          |                                                            |  |  |  |
|          | M10                                                                                                                                           | ≤ 10 %                                                                         |                                                            |  |  |  |
|          | M12                                                                                                                                           | ≤ 12 %                                                                         |                                                            |  |  |  |
|          | M15                                                                                                                                           | ≤ 15 %                                                                         |                                                            |  |  |  |
|          | Ash, A (w-%                                                                                                                                   | % of dry basis) ISO 18122                                                      |                                                            |  |  |  |
|          | A0.5                                                                                                                                          | ≤ 0,5 %                                                                        |                                                            |  |  |  |
|          | A0.7                                                                                                                                          | ≤ 0,7 %                                                                        |                                                            |  |  |  |
|          | A1.0                                                                                                                                          | ≤ 1,0 %                                                                        |                                                            |  |  |  |
|          | A1.2                                                                                                                                          | ≤ 1,2 %                                                                        |                                                            |  |  |  |
|          | A1.5                                                                                                                                          | ≤ 1,5 %                                                                        |                                                            |  |  |  |
|          | A2.0                                                                                                                                          | ≤ 2,0 %                                                                        |                                                            |  |  |  |
|          | A3.0                                                                                                                                          | ≤ 3,0 %                                                                        |                                                            |  |  |  |
|          | A4.0                                                                                                                                          | ≤ 4,0 %                                                                        |                                                            |  |  |  |
|          | A5.0                                                                                                                                          | ≤ 5,0 %                                                                        |                                                            |  |  |  |
|          | A6.0                                                                                                                                          | ≤ 6,0 %                                                                        |                                                            |  |  |  |
| e        | A7.0                                                                                                                                          | ≤ 7,0 %                                                                        |                                                            |  |  |  |
| <u>.</u> | A8.0                                                                                                                                          | ≤ 8,0 %                                                                        |                                                            |  |  |  |
| at       | A10.0                                                                                                                                         | $\leq 10,0\%$                                                                  |                                                            |  |  |  |
| E        |                                                                                                                                               |                                                                                |                                                            |  |  |  |
| ō        | Mechanical durability, DU (w-% of pellets after testing) ISO 17831-1                                                                          |                                                                                |                                                            |  |  |  |
| z        | DU97.5                                                                                                                                        | DU97.5 ≥ 97,5 %                                                                |                                                            |  |  |  |
|          | DU96.5                                                                                                                                        | ≥ 96,5 %                                                                       |                                                            |  |  |  |
|          | DU95.0                                                                                                                                        | $\geq$ 95,0 %                                                                  |                                                            |  |  |  |
|          | DU95.0-                                                                                                                                       | < 95,0 % (minimum value to be stated)                                          |                                                            |  |  |  |
|          | Amount of                                                                                                                                     | fines, F (w-%, < 3,15 mm) after production where                               | nen loaded or packed, ISO 18846                            |  |  |  |
|          | F1.0                                                                                                                                          | ≤ 1,0 %                                                                        |                                                            |  |  |  |
|          | F2.0                                                                                                                                          | ≤ 2,0 %                                                                        |                                                            |  |  |  |
|          | +3.0                                                                                                                                          | ≤ 3,0 %                                                                        |                                                            |  |  |  |
|          | F4.0                                                                                                                                          | $\leq 4,0 \%$                                                                  |                                                            |  |  |  |
|          | F5.0                                                                                                                                          | ≤ 5,0 %                                                                        |                                                            |  |  |  |
|          | F6.0                                                                                                                                          | $\leq 6.0\%$                                                                   |                                                            |  |  |  |
|          | F6.0+                                                                                                                                         | > 6,0 % (maximum value to be stated)                                           |                                                            |  |  |  |
|          | Additives (w-% of pressing mass) <sup>b</sup> Type and content of pressing aids, slagging inhibitors or any other additives have to be stated |                                                                                |                                                            |  |  |  |
|          | Bulk densi                                                                                                                                    | ty (BD) (kg/m <sup>3</sup> as received) ISO 17828                              |                                                            |  |  |  |
|          | BD550                                                                                                                                         | $\geq 550 \text{ kg/m}^3$                                                      |                                                            |  |  |  |
|          | BD580                                                                                                                                         | $\geq$ 580 kg/m <sup>3</sup>                                                   |                                                            |  |  |  |
|          | BD600                                                                                                                                         | $\geq$ 600 kg/m <sup>3</sup>                                                   |                                                            |  |  |  |
|          | BD625                                                                                                                                         | $\geq$ 625 kg/m <sup>3</sup>                                                   |                                                            |  |  |  |
|          | BD650                                                                                                                                         | ≥ 650 kg/m <sup>3</sup>                                                        |                                                            |  |  |  |
|          | BD700                                                                                                                                         | ≥ 700 kg/m <sup>3</sup>                                                        |                                                            |  |  |  |
|          | BD750                                                                                                                                         | ≥ 750 kg/m <sup>°</sup>                                                        |                                                            |  |  |  |
|          | BD800+                                                                                                                                        | > 800 kg/m <sup>3</sup> (minimum value to be stated)                           |                                                            |  |  |  |
|          | Net calorifi                                                                                                                                  | c value, Q (MJ/kg or kWh/kg as received)                                       | Minimum value to be stated <sup>c</sup>                    |  |  |  |
|          | ISO 18125                                                                                                                                     |                                                                                |                                                            |  |  |  |





|                                                                                     | Nitrogen, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                               |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|--|--|
|                                                                                     | N0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 0,2 %                                                         | Normative:                                                    |  |  |
|                                                                                     | N0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 0,3 %                                                         | Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2)       |  |  |
|                                                                                     | N0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 0,5 %                                                         |                                                               |  |  |
|                                                                                     | N0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 0,6 %                                                         | Informative:                                                  |  |  |
|                                                                                     | N0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 0,7 %                                                         | All fuels that are not chemically treated (see the exceptions |  |  |
|                                                                                     | N1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 1,0 %                                                         | above)                                                        |  |  |
|                                                                                     | N1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 1,5 %                                                         |                                                               |  |  |
|                                                                                     | N2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 2,0 %                                                         |                                                               |  |  |
|                                                                                     | N3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤ 3,0 %                                                         |                                                               |  |  |
|                                                                                     | N3.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > 3,0 % (maximum value to be stated)                            |                                                               |  |  |
|                                                                                     | Sulphur, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (w-% of dry basis) ISO 16994                                    |                                                               |  |  |
|                                                                                     | S0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,02 %                                                        | Normative:                                                    |  |  |
| -                                                                                   | S0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,03 %                                                        | Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2) or if |  |  |
| i<                                                                                  | S0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,04 %                                                        | sulphur containing additives have been used.                  |  |  |
| nformat                                                                             | S0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,05 %                                                        |                                                               |  |  |
|                                                                                     | S0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,08 %                                                        | Informative:                                                  |  |  |
|                                                                                     | S0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,10 %                                                        | All fuels that are not chemically treated (see the exceptions |  |  |
|                                                                                     | S0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≤ 0,20 %                                                        | above)                                                        |  |  |
| ive                                                                                 | S0.20+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > 0,20 % (maximum value to be stated)                           |                                                               |  |  |
| nat                                                                                 | Chlorine, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chlorine, CI (w-% of dry basis) ISO 16994                       |                                                               |  |  |
| or                                                                                  | Cl0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,01 %                                                        | Normative:                                                    |  |  |
| Ż                                                                                   | Cl0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,02 %                                                        | Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2)       |  |  |
|                                                                                     | CI0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,03 %                                                        | Informative:                                                  |  |  |
|                                                                                     | Cl0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,05 %                                                        | All fuels that are not chemically treated (see the exceptions |  |  |
|                                                                                     | Cl0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,07 %                                                        | above)                                                        |  |  |
|                                                                                     | CI0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,10 %                                                        |                                                               |  |  |
|                                                                                     | Cl0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,20 %                                                        |                                                               |  |  |
|                                                                                     | CI0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 0,30 %                                                        |                                                               |  |  |
|                                                                                     | Cl0.30+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 0,30 % (maximum value to be stated)                           |                                                               |  |  |
|                                                                                     | <b>Fixed carbon, C</b> <sup>d</sup> (w-% of dry basis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                                                               |  |  |
|                                                                                     | Minimum va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alue to be stated                                               | Normative only for thermally treated biomass pellets          |  |  |
|                                                                                     | Volatile matter, VM (w-% of dry basis) ISO 18123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                               |  |  |
|                                                                                     | Maximum v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | alue to be stated                                               | Normative only for thermally treated biomass pellets          |  |  |
|                                                                                     | Particle siz<br>% of dry ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ze distribution of disintegrated pellets (w-<br>isis) ISO 17830 | Values to be stated of pellets for industrial use             |  |  |
|                                                                                     | Informative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e:                                                              |                                                               |  |  |
|                                                                                     | Ash meltin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ig behaviour $^{e}$ (°C) CEN/TS 15370-1 $^{[4]}$                | Should be stated                                              |  |  |
| <ul> <li>Ar</li> <li>Pé</li> <li>Tr</li> <li>ar</li> <li>Mi</li> <li>Fix</li> </ul> | <ul> <li><sup>4</sup> Amount of pellets longer than 40 mm (or 50 mm) can be 5 w-%. Maximum length for classes D06, D08 and D10 shall be ≤ 45 mm. Pellets are longer than 3,15 mm, if they stay on a round hole-sieve of 3,15 mm.</li> <li><sup>5</sup> The maximum amount of additive is 20 w-% of pressing mass. Type stated (e.g. starch, corn flour, potato flour, vegetable oil, lignin). If amount is greater, then raw material for pellet is blend.</li> <li><sup>6</sup> Minimum value for torrefied or other thermally treated biomass pellets are usual ≥ 18 MJ/kg.</li> <li><sup>6</sup> Fixed carbon (%) is calculated by the following: 100 – [moisture (w-%) + ash (w-%) + volatile matter (w-%)]. All percentage are on the same moisture basis.</li> </ul> |                                                                 |                                                               |  |  |

Special attention should be paid to the ash melting behaviour for some biomass fuels, for example eucalyptus, poplar, short rotation coppice, straw, miscanthus and olive stone. It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated.

NOTE 6

Thermally treated biomass pellets (e.g. torrefied pellets) are also included in Table 4.





### Table 5 — Specification of properties for wood chips and hog fuel (EN ISO 17225-1)

|     | Master table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                           |                                         |                                                    |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------|--|--|
|     | Origin: According to 6.1 and Table 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                           | Woody biomass (1)                       |                                                    |  |  |
|     | Traded Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | orm                                          |                           | Wood chips or hog fuel <sup>a</sup>     |                                                    |  |  |
|     | Dimensio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ons (mm) ISO 17827-1                         |                           |                                         |                                                    |  |  |
|     | Main fraction <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | Coarse fraction, w-%      | Max. length of particles <sup>c</sup> , | Max. cross sectional area of                       |  |  |
|     | (minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60 w-%), mm                                  | (length of particle, mm)  | mm                                      | the coarse fraction <sup>d</sup> , cm <sup>2</sup> |  |  |
|     | P16S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,15 mm < P <u>&lt;</u> 16 mm                | <u>&lt;</u> 6 % > 31,5 mm | <u>&lt;</u> 45 mm                       | <u>≤</u> 2 cm²                                     |  |  |
|     | P16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,15 mm < P <u>&lt;</u> 16 mm                | <u>&lt;</u> 6 % > 31,5 mm | <u>&lt;</u> 150 mm                      |                                                    |  |  |
|     | P31S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,15 mm < P <u>&lt;</u> 31,5 mm              | <u>&lt;</u> 6 % > 45 mm   | <u>&lt;</u> 150 mm                      | <u>&lt;</u> 4 cm²                                  |  |  |
|     | P31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,15 mm < P <u>&lt;</u> 31,5 mm              | <u>&lt;</u> 6 % > 45 mm   | <u>&lt;</u> 200 mm                      |                                                    |  |  |
|     | P45S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,15 mm < P <u>&lt;</u> 45 mm                | <u>&lt;</u> 10 % > 63 mm  | <u>&lt;</u> 200 mm                      | <u>&lt;</u> 6 cm²                                  |  |  |
|     | P45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,15 mm < P <u>&lt;</u> 45 mm                | <u>&lt;</u> 10 % > 63 mm  | <u>&lt;</u> 350 mm                      |                                                    |  |  |
|     | P63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,15 mm < P <u>&lt;</u> 63 mm                | <u>&lt;</u> 10 % > 100 mm | <u>&lt;</u> 350 mm                      |                                                    |  |  |
|     | P100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,15 mm < P <u>&lt;</u> 100 mm               | <u>&lt;</u> 10 % > 150mm  | <u>&lt;</u> 350 mm                      |                                                    |  |  |
|     | P200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,15 mm < P <u>&lt;</u> 200 mm               | <u>&lt;</u> 10 % > 250mm  | <u>&lt;</u> 400 mm                      |                                                    |  |  |
|     | P300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,15 mm < P <u>&lt;</u> 300 mm               | to be specified           | to be specified                         |                                                    |  |  |
|     | Fine fract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ti <b>on, F</b> (< 3,15 mm w-%), IS          | SO 17827-1                |                                         |                                                    |  |  |
|     | F05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>&lt;</u> 5%                               |                           |                                         |                                                    |  |  |
|     | F10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>&lt;</u> 10 %                             |                           |                                         |                                                    |  |  |
|     | F15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>&lt;</u> 15 %                             |                           |                                         |                                                    |  |  |
|     | F20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>&lt; 20 %</u>                             |                           |                                         |                                                    |  |  |
|     | F25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>&lt;</u> 25 %                             |                           |                                         |                                                    |  |  |
| v e | F30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\leq 30\%$                                  |                           |                                         |                                                    |  |  |
| ati | $\frac{1}{30} = \frac{1}{30} $ |                                              |                           |                                         |                                                    |  |  |
| Ξ   | M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 10 %                                       |                           |                                         |                                                    |  |  |
| οr  | M15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 15 %                                       |                           |                                         |                                                    |  |  |
| z   | M20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 20 %                                       |                           |                                         |                                                    |  |  |
|     | M25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 25 %                                       |                           |                                         |                                                    |  |  |
|     | M30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 30 %                                       |                           |                                         |                                                    |  |  |
|     | M35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 35 %                                       |                           |                                         |                                                    |  |  |
|     | M40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 40 %                                       |                           |                                         |                                                    |  |  |
|     | M45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 45 %                                       |                           |                                         |                                                    |  |  |
|     | M50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 50 %                                       |                           |                                         |                                                    |  |  |
|     | M55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 55 %                                       |                           |                                         |                                                    |  |  |
|     | M55+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > 55 % (maximum value                        | to be stated)             |                                         |                                                    |  |  |
|     | Ash, A (w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ash, A (w-% of dry basis) ISO 18122          |                           |                                         |                                                    |  |  |
|     | A0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\leq$ 0,5 %                                 |                           |                                         |                                                    |  |  |
|     | A0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\leq$ 0,7 %                                 |                           |                                         |                                                    |  |  |
|     | A1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≤ <b>1</b> ,0 %                              |                           |                                         |                                                    |  |  |
|     | A1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≤ 1,5 %                                      |                           |                                         |                                                    |  |  |
|     | A2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\leq$ 2,0 %                                 |                           |                                         |                                                    |  |  |
|     | A3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\leq$ 3,0 %                                 |                           |                                         |                                                    |  |  |
|     | A5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≤ <b>5,0</b> %                               |                           |                                         |                                                    |  |  |
|     | A7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≤ <b>7</b> ,0 %                              |                           |                                         |                                                    |  |  |
|     | A10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤ 10,0 %                                     |                           |                                         |                                                    |  |  |
|     | A10.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A10.0+ > 10,0 % (maximum value to be stated) |                           |                                         |                                                    |  |  |





|                                    | Nitrogen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , <b>N</b> (w-% of dry basis) ISO 16948                           |                                                               |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|--|--|
|                                    | N0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 0,2 %                                                           | Normative:                                                    |  |  |
|                                    | N0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 0,3 %                                                           | Chemically treated biomass (1.2.2; 1.3.2)                     |  |  |
|                                    | N0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 0,5 %                                                           | Informative:                                                  |  |  |
|                                    | N1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 1,0 %                                                           | All fuels that are not chemically treated (see the exceptions |  |  |
|                                    | N1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 1,5 %                                                           | above)                                                        |  |  |
|                                    | N2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 2,0 %                                                           |                                                               |  |  |
|                                    | N3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 3,0 %                                                           |                                                               |  |  |
| ive                                | N3.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | > 3,0 % (maximum value to be stated)                              |                                                               |  |  |
| nat                                | Sulphur,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sulphur, S (w-% of dry basis) ISO 16994                           |                                                               |  |  |
| orr                                | S0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤ 0,02 %                                                          | Normative:                                                    |  |  |
| Inf                                | S0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤ 0,03 %                                                          | Chemically treated biomass (1.2.2; 1.3.2)                     |  |  |
| /e/                                | S0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤ 0,04 %                                                          | Informative:                                                  |  |  |
| rmativ                             | S0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤ 0,05 %                                                          | All fuels that are not chemically treated (see the exceptions |  |  |
|                                    | S0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤ 0,08 %                                                          | above)                                                        |  |  |
| <sup>o</sup> N                     | S0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤ 0,10 %                                                          |                                                               |  |  |
| -                                  | S0.10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | > 0,10 % (maximum value to be stated)                             |                                                               |  |  |
|                                    | Chlorine,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CI</b> (w-% of drv basis) ISO 16994                            |                                                               |  |  |
|                                    | Cl0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.02 %                                                          | Normative:                                                    |  |  |
|                                    | CI0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.03 %                                                          | Chemically treated biomass (1.2.2, 1.3.2)                     |  |  |
|                                    | CI0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.05 %                                                          | Informative                                                   |  |  |
|                                    | CI0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.07 %                                                          | All fuels that are not chemically treated (see the exceptions |  |  |
|                                    | CI0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.10 %                                                          | above)                                                        |  |  |
|                                    | Cl0.10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > 0.10 % (maximum value to be stated)                             |                                                               |  |  |
|                                    | Net calor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ific value. Q (MJ/kg or kWh/kg as received)                       | Minimum value to be stated                                    |  |  |
|                                    | or energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / density, E (MJ/ m <sup>3</sup> or kWh/m <sup>3</sup> loose) ISO |                                                               |  |  |
|                                    | 18125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                                               |  |  |
|                                    | Bulk density (BD) (kg/m <sup>3</sup> as received) ISO 17828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                                                               |  |  |
| live                               | BD150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>≥</u> 150                                                      | Recommended to be stated if traded on a volume basis          |  |  |
| nat                                | BD200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>≥</u> 200                                                      |                                                               |  |  |
| orr                                | BD250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>≥</u> 250                                                      |                                                               |  |  |
| Inf                                | BD300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>≥</u> 300                                                      |                                                               |  |  |
|                                    | BD350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≥ 350                                                             |                                                               |  |  |
|                                    | BD400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\geq$ 400                                                        |                                                               |  |  |
|                                    | BD400+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |                                                               |  |  |
|                                    | Ash melting behaviour <sup>†</sup> (°C) CEN/TS 15370-1 <sup>[4]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | Should be stated                                              |  |  |
| a F<br>re<br>st<br>du<br>cu<br>b T | <ul> <li><sup>a</sup> For the production of hog fuel often raw material with high content of stones is used e.g. stumps/roots or wood from gardens/parks. It is recommended to determine and specify the maximum content of these stones in w-% since the declaration of the ash content alone may not provide sufficient information to describe the impacts of a hog fuel batch on feeding and combustion processes. The content of stones is determined by hand sorting of the fraction &gt; 3,15 mm and weighing the stones. A suitable large sample has to be used for the determination, see ISO 14778. Small stones, sand and soil which pass the 3,15 mm sieve contribute to the ash content but not to the content of stones.</li> <li><sup>b</sup> The numerical values (P-class) for dimension refer to the particle sizes (at least 60 w-%) passing through the mentioned round hole.</li> </ul> |                                                                   |                                                               |  |  |
| si<br>p<br>°L                      | sieve size (ISO 17827-1). Use S classes for wood chips and hog fuel for residential and small scale commercial applications. Lowest possible property class to be stated.<br>Length and cross sectional area only have to be determined for those particles, which are to be found in the coarse fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                               |  |  |

Maximum 2 pieces of about 10 litre sample may exceed the maximum length, if the cross sectional area is < 0,5 cm<sup>2</sup>. <sup>d</sup> For measuring the cross sectional area it is recommended to use a transparent set square, place the particle orthogonally behind the

set square and estimate the maximum cross sectional area of this particle with the help of the cm<sup>2</sup>-pattern. <sup>e</sup> Lowest possible property class to be stated. Certain boilers require minimum moisture content, which should be stated.

f Special attention should be paid to the ash melting behaviour for some biomass fuels, for example eucalyptus, poplar, short rotation coppice. It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT, hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated.





## Table 6 — Specification of properties for log wood, firewood (EN ISO 17225-1)

|                                                     | Master table                                    |                                                                     |                                                                          |  |  |  |
|-----------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
|                                                     | Origin:                                         | According to 6.1 and Table 1.                                       | Woody biomass (1.1 or 1.2.1)<br>Wood species to be stated                |  |  |  |
|                                                     | Traded                                          | Form                                                                | Stem wood/round wood, Log wood, firewood                                 |  |  |  |
|                                                     | Dimens                                          | ions (cm)                                                           |                                                                          |  |  |  |
|                                                     | Length                                          | (L) (maximum length of a single piece), cm <sup>a</sup>             |                                                                          |  |  |  |
|                                                     | L20-                                            | < 20 cm                                                             |                                                                          |  |  |  |
|                                                     | L20                                             | $20 \text{ cm} \pm 2 \text{ cm}$                                    |                                                                          |  |  |  |
|                                                     | L25                                             | $25 \text{ cm} \pm 2 \text{ cm}$                                    |                                                                          |  |  |  |
|                                                     | L30                                             | $30 \text{ cm} \pm 2 \text{ cm}$                                    |                                                                          |  |  |  |
|                                                     | L33                                             | $33 \text{ cm} \pm 2 \text{ cm}$                                    |                                                                          |  |  |  |
|                                                     | L40                                             | $40 \text{ cm} \pm 2 \text{ cm}$                                    |                                                                          |  |  |  |
|                                                     | L50                                             | 50 cm $\pm$ 4 cm                                                    | Ľ L                                                                      |  |  |  |
|                                                     | L100                                            | $100 \text{ cm} \pm 5 \text{ cm}$                                   | L Length D                                                               |  |  |  |
|                                                     | L100+                                           | > 100 cm (maximum value has to be stated)                           | Diameter                                                                 |  |  |  |
|                                                     |                                                 |                                                                     | Figure 4 — Examples                                                      |  |  |  |
|                                                     | Diamete                                         | er (D) (maximum diameter of a single piece), cm                     | a                                                                        |  |  |  |
|                                                     | D2-                                             | < 2 cm ignition wood (kindling)                                     |                                                                          |  |  |  |
| <<br><                                              | D5                                              | $2 \text{ cm} \le D \le 5 \text{ cm}$                               |                                                                          |  |  |  |
| ţ                                                   | D10                                             | $5 \text{ cm} \le D \le 10 \text{ cm}$                              |                                                                          |  |  |  |
| na                                                  | D15                                             | $10 \text{ cm} \le D \le 15 \text{ cm}$                             |                                                                          |  |  |  |
| L L                                                 | D20                                             | $10 \text{ cm} \le D \le 20 \text{ cm}$                             |                                                                          |  |  |  |
| ž                                                   | D25                                             | $10 \text{ cm} \le D \le 25 \text{ cm}$                             |                                                                          |  |  |  |
| -                                                   | D35                                             | $20 \text{ cm} \le D \le 35 \text{ cm}$                             |                                                                          |  |  |  |
|                                                     |                                                 |                                                                     |                                                                          |  |  |  |
|                                                     | Moistur                                         | Moisture, M (w-% as received) <sup>o</sup> ISO 18134-1, ISO 18134-2 |                                                                          |  |  |  |
|                                                     | M15                                             | < 15 %                                                              |                                                                          |  |  |  |
|                                                     | M20                                             | $\leq 20\%$                                                         |                                                                          |  |  |  |
|                                                     | M25                                             | ≤ 25 %                                                              |                                                                          |  |  |  |
|                                                     | M30                                             | < 30 %                                                              |                                                                          |  |  |  |
|                                                     | M35                                             | < 35 %                                                              |                                                                          |  |  |  |
|                                                     | M40                                             | $\leq 40 \%$                                                        |                                                                          |  |  |  |
|                                                     | M45                                             | ≤ <b>45</b> %                                                       |                                                                          |  |  |  |
|                                                     | M55                                             | ≤ 55 %                                                              |                                                                          |  |  |  |
|                                                     | M55+                                            | > 55 % (maximum value to be stated)                                 |                                                                          |  |  |  |
|                                                     | Volume                                          | e, <b>m</b> <sup>3</sup> stacked or loose <b>or weight, kg</b> as   | To be stated which unit is used when retailed (m <sup>3</sup> stacked or |  |  |  |
|                                                     | received                                        |                                                                     | m <sup>3</sup> loose, kg) and/or packaged log woods weight.              |  |  |  |
| Moisture content, U (w-% of dry basis) <sup>b</sup> |                                                 | e content, U (w-% of dry basis) <sup>b</sup>                        |                                                                          |  |  |  |
|                                                     | U10                                             | ≤ 10 %                                                              |                                                                          |  |  |  |
| e                                                   | U11                                             | ≤ <b>11 %</b>                                                       |                                                                          |  |  |  |
| ١ti                                                 | U15                                             | ≤ 15 %                                                              |                                                                          |  |  |  |
| ma                                                  | U20                                             | ≤ 20 %                                                              |                                                                          |  |  |  |
| for                                                 | U25                                             | ≤ 25 %                                                              |                                                                          |  |  |  |
| Ľ                                                   | 030                                             | l ≤ 30 %                                                            |                                                                          |  |  |  |
|                                                     | U50                                             | l ≤ 50 %                                                            |                                                                          |  |  |  |
|                                                     |                                                 | $0 \leq 100\%$                                                      |                                                                          |  |  |  |
|                                                     | 10100+ $  > 100 %$ (maximum value to be stated) |                                                                     |                                                                          |  |  |  |





|             | Energy density, E <sup>C</sup> (MJ/m <sup>3</sup> or kWh/m <sup>3</sup> stacked or loose)<br>or Net calorific value, Q (MJ/kg or kWh/kg as received)<br>ISO 18125 | Recommended to be specified when retailed.                                                                                                          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Informative | Proportion of split volume (% of pieces)                                                                                                                          | No split (= mainly round wood)<br>≥ 90 %<br>≥ 50 %                                                                                                  |
|             | The cut-off surface                                                                                                                                               | To be stated if the cut-off surface of log wood is even and smooth <sup>d</sup> or ends of log wood is uneven                                       |
|             | Decay and mould                                                                                                                                                   | No visible decay or mould $\leq$ 5 % of pieces<br>If significant amount (more than 10 % of pieces) of decay<br>or mould exists it should be stated. |
|             | Drying                                                                                                                                                            | Recommended to be stated, if firewood is dried by natural seasoning by ambient air or artificially by hot air.                                      |

<sup>a</sup> 85 % of the firewood should be kept in specified diameter property class. It is allowed to have 15 % firewood shorter than requested length including the limit value.

<sup>b</sup> M (w-%) on wet basis and U (w-%) on dry basis. Moisture content should not be less 12 w-% on wet basis (M) or 13,64 w-% on dry basis (U) for oven-ready firewood. The lowest possible moisture content class to be stated. Calculation from M to U or from U to M is presented in informative Annex E.

presented in informative Annex E.
<sup>c</sup> The energy density may be calculated according to Annex D on the basis of the bulk density and the net calorific value of the dry fuel. Example: For a firewood with a net calorific value on dry basis, E of 5,3 kWh/kg and an actual moisture content M<sub>ar</sub> of 15 w-%, the net calorific value on as received basis E<sub>ar</sub> is 4,43 kWh/kg. For a bulk density BD of 410 kg/stacked m<sup>3</sup>, the energy density E<sub>ar</sub> is 1 800 kWh/stacked m<sup>3</sup>.

<sup>d</sup> Use of chainsaw or circular saw is considered to be smooth and even.





### Table 7 — Specification of properties for sawdust (EN ISO 17225-1)

|                | Master table                                                                                                                                                                                                                              |                                                                     |                                                           |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
|                | Origin: Ad                                                                                                                                                                                                                                | ccording to 6.1 and Table 1.                                        | Woody biomass (1)                                         |  |  |  |
|                | Traded Fo                                                                                                                                                                                                                                 | orm                                                                 | Sawdust                                                   |  |  |  |
|                | Moisturo                                                                                                                                                                                                                                  | $M (w_{-}\% as received)^{a} ISO 18134_{-}1 ISO 18134_{-}$          | ว                                                         |  |  |  |
|                | M10                                                                                                                                                                                                                                       | 100 - 100 (w - 78 as received) 150 10154-1, 150 10154-2             | 2                                                         |  |  |  |
|                | M15                                                                                                                                                                                                                                       | < 15 %                                                              |                                                           |  |  |  |
|                | MOO                                                                                                                                                                                                                                       | ≤ 15 %                                                              |                                                           |  |  |  |
|                | NIZU<br>MOD                                                                                                                                                                                                                               | ≤ 20 %                                                              |                                                           |  |  |  |
|                | M25                                                                                                                                                                                                                                       | ≤ 25 %                                                              |                                                           |  |  |  |
|                | M30                                                                                                                                                                                                                                       | ≤ 30 %                                                              |                                                           |  |  |  |
|                | M35                                                                                                                                                                                                                                       | ≤ 35 %                                                              |                                                           |  |  |  |
|                | M45                                                                                                                                                                                                                                       | ≤ 45 %                                                              |                                                           |  |  |  |
|                | M50                                                                                                                                                                                                                                       | ≤ 50 %                                                              |                                                           |  |  |  |
|                | M55                                                                                                                                                                                                                                       | _ ≤ 55 %                                                            |                                                           |  |  |  |
|                | M60                                                                                                                                                                                                                                       | ≤ 60 %                                                              |                                                           |  |  |  |
| ٨e             | M65                                                                                                                                                                                                                                       | ≤ 65 %                                                              |                                                           |  |  |  |
| ati            | M65+                                                                                                                                                                                                                                      | > 65 % (maximum value to be stated)                                 |                                                           |  |  |  |
| Ë              | Ash, A (w                                                                                                                                                                                                                                 | /-% of dry basis) IS <u>O 181</u> 22                                |                                                           |  |  |  |
| ō              | A0.5                                                                                                                                                                                                                                      | ≤ 0.5 %                                                             |                                                           |  |  |  |
| 2              | A0.7                                                                                                                                                                                                                                      | i ≤ 0.7 %                                                           |                                                           |  |  |  |
|                | A1.0                                                                                                                                                                                                                                      | i ≤ 1 0 %                                                           |                                                           |  |  |  |
|                | A1 5                                                                                                                                                                                                                                      | _ 1,5 %                                                             |                                                           |  |  |  |
|                | A2 0                                                                                                                                                                                                                                      |                                                                     |                                                           |  |  |  |
|                | A2.0                                                                                                                                                                                                                                      |                                                                     |                                                           |  |  |  |
|                | A3.0                                                                                                                                                                                                                                      | ≤ 3,U %                                                             |                                                           |  |  |  |
|                | A5.0                                                                                                                                                                                                                                      | ≤ 5,0 %                                                             |                                                           |  |  |  |
|                | A/.U                                                                                                                                                                                                                                      | ≤ 7,0 %                                                             |                                                           |  |  |  |
|                | A10.0                                                                                                                                                                                                                                     | ≤ 10,0 %                                                            |                                                           |  |  |  |
|                | A10.0+                                                                                                                                                                                                                                    | > 10,0 % (maximum value to be stated)                               |                                                           |  |  |  |
|                | Net calor                                                                                                                                                                                                                                 | ific value, Q (MJ/kg or kWh/kg as received) or                      | Minimum value to be stated                                |  |  |  |
|                | energy de                                                                                                                                                                                                                                 | ensity, E (MJ/m <sup>3</sup> or kWh/m <sup>3</sup> loose) ISO 18125 |                                                           |  |  |  |
| -              | Nitrogen.                                                                                                                                                                                                                                 | N (w-% of dry basis) ISO 16948                                      |                                                           |  |  |  |
|                | NO 2                                                                                                                                                                                                                                      |                                                                     | Normative:                                                |  |  |  |
|                | NO 3                                                                                                                                                                                                                                      | < 0.3 %                                                             | Chemically treated biomass (1 2 2: 1 3 2)                 |  |  |  |
| e              | NO 5                                                                                                                                                                                                                                      | <0.5 %                                                              |                                                           |  |  |  |
| Ę              | N0.5                                                                                                                                                                                                                                      | $\leq 0.5 \%$                                                       | Informative:                                              |  |  |  |
| ma             | N1.0                                                                                                                                                                                                                                      | ≤ 1,0 %                                                             | All fuels that are not chemically treated (see the        |  |  |  |
| L O            | N2.0                                                                                                                                                                                                                                      | ≤ 2,0 %                                                             | exceptions above)                                         |  |  |  |
| 'nf            | N3.0                                                                                                                                                                                                                                      | ≤ 3,0 %                                                             |                                                           |  |  |  |
| i / i          | N3.0+                                                                                                                                                                                                                                     | > 3,0 % (maximum value to be stated)                                |                                                           |  |  |  |
| i≷             | Chlorine,                                                                                                                                                                                                                                 | CI (weight of dry basis, w-%) ISO 16994                             | 1                                                         |  |  |  |
| lat            | Cl0.01                                                                                                                                                                                                                                    | ≤ 0,01 %                                                            | Normative:                                                |  |  |  |
| гш             | CI0.02                                                                                                                                                                                                                                    | ≤ 0,02 %                                                            | Chemically treated biomass (1.2.2; 1.3.2)                 |  |  |  |
| 2              | CI0.03                                                                                                                                                                                                                                    | ≤ 0,03 %                                                            | Informativa                                               |  |  |  |
| _              | CI0.07                                                                                                                                                                                                                                    | ≤ 0,07 %                                                            | All fuels that are not chemically treated (aso the        |  |  |  |
|                | CI0.10                                                                                                                                                                                                                                    | ≤ 0.10 %                                                            | All fuels that are not chemically treated (see the        |  |  |  |
|                | CI0.10+                                                                                                                                                                                                                                   | > 0.10 % (maximum value to be stated)                               | exceptions above)                                         |  |  |  |
|                | Bulk den                                                                                                                                                                                                                                  | sity (BD) (kg/m <sup>3</sup> as received) ISO 17828                 |                                                           |  |  |  |
|                | BD100                                                                                                                                                                                                                                     | $> 100 \text{ kg/m}^3$                                              | Recommended to be stated if traded by volume basis        |  |  |  |
|                | BD150                                                                                                                                                                                                                                     | $> 150 \text{ kg/m}^3$                                              |                                                           |  |  |  |
|                | BD200                                                                                                                                                                                                                                     | $\geq 200 \text{ kg/m}^3$                                           |                                                           |  |  |  |
| ve             | BD250                                                                                                                                                                                                                                     | $> 250 \text{ kg/m}^3$                                              |                                                           |  |  |  |
| ati            | BD200                                                                                                                                                                                                                                     | $\geq 200 \text{ kg/m}^3$                                           |                                                           |  |  |  |
| E              | BD300                                                                                                                                                                                                                                     | 2 300 kg/m                                                          |                                                           |  |  |  |
| £0             | BD350                                                                                                                                                                                                                                     | ≥ 350 kg/m <sup>°</sup>                                             |                                                           |  |  |  |
| Ч              | BD400+                                                                                                                                                                                                                                    | > 400 kg/m <sup>3</sup> (minimum value to be stated)                |                                                           |  |  |  |
|                | Ash melti                                                                                                                                                                                                                                 | ing behaviour <sup>b</sup> (°C) CEN/TS 15370-1 <sup>[4]</sup>       | Should be stated                                          |  |  |  |
|                | Sieving                                                                                                                                                                                                                                   |                                                                     | Sieving and the screen size of the sieve should be stated |  |  |  |
| <sup>a</sup> L | owest possił                                                                                                                                                                                                                              | ble property class to be stated. Certain boilers require m          | inimum moisture content, which should to be stated.       |  |  |  |
|                | <sup>b</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated. |                                                                     |                                                           |  |  |  |

NOTE 7 Particle size of sawdust is considered to be homogenous. Particle size distribution may be specified if requested.





### Table 8 — Specification of properties for shavings (EN ISO 17225-1)

|                                                        | Master table                                                                                                                                                                                                                             |                                                                     |                                                    |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--|--|
|                                                        | Origin: A                                                                                                                                                                                                                                | ccording to 6.1 and Table 1.                                        | Woody biomass (1)                                  |  |  |
|                                                        | Traded F                                                                                                                                                                                                                                 | orm                                                                 | Shavings                                           |  |  |
| Moisture, M (w-% as received) ISO 18134-1, ISO 18134-2 |                                                                                                                                                                                                                                          |                                                                     | 2                                                  |  |  |
|                                                        | M10                                                                                                                                                                                                                                      | ≤ 10 %                                                              |                                                    |  |  |
|                                                        | M15                                                                                                                                                                                                                                      | ≤ 15 %                                                              |                                                    |  |  |
|                                                        | M20                                                                                                                                                                                                                                      | $\leq 20 \%$                                                        |                                                    |  |  |
|                                                        | M30                                                                                                                                                                                                                                      | $\leq$ 30 %                                                         |                                                    |  |  |
|                                                        | M30+                                                                                                                                                                                                                                     | > 30 % (maximum value to be stated)                                 |                                                    |  |  |
|                                                        | Ash, A (w                                                                                                                                                                                                                                | v-% of dry basis) ISO 18122                                         |                                                    |  |  |
| ve<br>Ve                                               | A0.5                                                                                                                                                                                                                                     | $\leq$ 0,5 %                                                        |                                                    |  |  |
| ati                                                    | A0.7                                                                                                                                                                                                                                     | $\leq$ 0,7 %                                                        |                                                    |  |  |
| Ē                                                      | A1.0                                                                                                                                                                                                                                     | ≤ 1,0 %                                                             |                                                    |  |  |
| Ň                                                      | A1.5                                                                                                                                                                                                                                     | ≤ 1,5 %                                                             |                                                    |  |  |
|                                                        | A2.0                                                                                                                                                                                                                                     | ≤ 2,0 %                                                             |                                                    |  |  |
|                                                        | A3.0                                                                                                                                                                                                                                     | ≤ 3,0 %                                                             |                                                    |  |  |
|                                                        | A3.0<br>A7.0                                                                                                                                                                                                                             | ≤ 5,0 %                                                             |                                                    |  |  |
|                                                        | A10.0                                                                                                                                                                                                                                    | $\leq 7,0\%$                                                        |                                                    |  |  |
|                                                        | A10.0+                                                                                                                                                                                                                                   | > 10.0 % (maximum value to be stated)                               |                                                    |  |  |
|                                                        | Net calor                                                                                                                                                                                                                                | if $\rho = 0$ , $\rho = 0$ (M1/kg or kWb/kg as received) or         | Minimum value to be stated                         |  |  |
|                                                        | energy d                                                                                                                                                                                                                                 | ensity, E (MJ/m <sup>3</sup> or kWh/m <sup>3</sup> loose) ISO 18125 |                                                    |  |  |
|                                                        | Nitrogen                                                                                                                                                                                                                                 | <b>N</b> (w-% of dry basis) ISO 16948                               |                                                    |  |  |
|                                                        | N0.2                                                                                                                                                                                                                                     | ≤ 0,2 %                                                             | Normative:                                         |  |  |
|                                                        | N0.3                                                                                                                                                                                                                                     | ≤ 0,3 %                                                             | Chemically treated biomass (1.2.2; 1.3.2)          |  |  |
| ive                                                    | N0.5                                                                                                                                                                                                                                     | ≤ 0,5 %                                                             | Informative:                                       |  |  |
| nat                                                    | N1.0                                                                                                                                                                                                                                     | ≤ 1,0 %                                                             | All fuels that are not chemically treated (see the |  |  |
| or                                                     | N2.0                                                                                                                                                                                                                                     | ≤ 2,0 %                                                             | exceptions above)                                  |  |  |
| inf                                                    | N3.0+                                                                                                                                                                                                                                    | $\leq$ 3,0 % (maximum value to be stated)                           |                                                    |  |  |
| /e/                                                    | Chloring                                                                                                                                                                                                                                 | 21  (weight of dry basis, w %) ISO 16004                            |                                                    |  |  |
| ativ                                                   | CIO 01 CO 01 %                                                                                                                                                                                                                           |                                                                     |                                                    |  |  |
| E                                                      | CI0.02                                                                                                                                                                                                                                   | < 0.02 %                                                            | Chemically treated biomass (1.2.2; 1.3.2)          |  |  |
| Ž                                                      | CI0.03                                                                                                                                                                                                                                   | < 0.03 %                                                            |                                                    |  |  |
|                                                        | CI0.07                                                                                                                                                                                                                                   | < 0.07 %                                                            | All fuels that are not chemically treated (see the |  |  |
|                                                        | CI0.10                                                                                                                                                                                                                                   | ≤ 0.10 %                                                            | exceptions above)                                  |  |  |
|                                                        | CI0.10+                                                                                                                                                                                                                                  | > 0,10 % (maximum value to be stated)                               |                                                    |  |  |
|                                                        | Bulk den                                                                                                                                                                                                                                 | sity (BD) (kg/m <sup>3</sup> as received) ISO 17828                 |                                                    |  |  |
|                                                        | BD100                                                                                                                                                                                                                                    | ≥ 100 kg/m <sup>3</sup>                                             | Recommended to be stated if traded by volume basis |  |  |
| a                                                      | BD150                                                                                                                                                                                                                                    | $\geq$ 150 kg/m <sup>3</sup>                                        |                                                    |  |  |
| ti                                                     | BD200                                                                                                                                                                                                                                    | $\geq 200 \text{ kg/m}^{\circ}$                                     |                                                    |  |  |
| ma                                                     | BD250                                                                                                                                                                                                                                    | $\geq$ 250 kg/m<br>$\geq$ 200 kg/m <sup>3</sup>                     |                                                    |  |  |
| for                                                    | BD350+                                                                                                                                                                                                                                   | $\geq$ 350 kg/m <sup>3</sup> (minimum value to be stated)           |                                                    |  |  |
| Ē                                                      | Ash melt                                                                                                                                                                                                                                 | ing behaviour $^{a}$ (°C) CEN/TS 15370-1 $^{[4]}$                   | Should be stated                                   |  |  |
|                                                        | Sieving                                                                                                                                                                                                                                  |                                                                     | Sieving and the screen size of the sieve should be |  |  |
|                                                        | oleving                                                                                                                                                                                                                                  |                                                                     | stated                                             |  |  |
| <sup>a</sup> It is<br>her                              | <sup>a</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), bemisphere temperature (HT) and flow temperature (ET)) in oxidizing conditions should be stated |                                                                     |                                                    |  |  |

NOTE 8 Particle sizes of shavings are considered to be homogenous. Particle size distribution may be specified if requested.





### Table 9 — Specification of properties for bark (EN ISO 17225-1)

|                | Master table  |                                                                                                                      |                                                               |  |  |  |
|----------------|---------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
|                | Origin: A     | ccording to 6.1 and Table 1.                                                                                         | Woody biomass (1.1.6, 1.2.1.5, 1.2.2.3, 1.3.1.3, 1.3.2.3)     |  |  |  |
|                | Traded F      | orm:                                                                                                                 | Bark                                                          |  |  |  |
|                | Dimensio      | ons (mm) ISO 17827-1                                                                                                 |                                                               |  |  |  |
|                |               | Nominal top size, mm <sup>a</sup>                                                                                    | Coarse fraction, max. length of a particle, mm < 5 w-%        |  |  |  |
|                | P16           | P ≤ 16 mm                                                                                                            | > 45 mm, all < 100 mm                                         |  |  |  |
|                | P45           | P ≤ 45 mm                                                                                                            | > 63 mm                                                       |  |  |  |
|                | P63           | P ≤ 63 mm                                                                                                            | > 100 mm                                                      |  |  |  |
|                | P100          | P ≤ 100 mm                                                                                                           | > 150 mm                                                      |  |  |  |
|                | P200          | P ≤ 200 mm                                                                                                           | > 350 mm                                                      |  |  |  |
|                | Moisture      | <b>M</b> (w-% as received) <sup>b</sup> ISO 18134-1, ISO 18134-2                                                     | 2                                                             |  |  |  |
|                | M20           | ≤ 20 %                                                                                                               | -                                                             |  |  |  |
|                | M25           | ≤ 25 %                                                                                                               |                                                               |  |  |  |
|                | M30           | < 30 %                                                                                                               |                                                               |  |  |  |
|                | M35           | ≤ 35 %                                                                                                               |                                                               |  |  |  |
|                | M40           | < 40 %                                                                                                               |                                                               |  |  |  |
| a)             | M45           | ≤ 45 %                                                                                                               |                                                               |  |  |  |
| Ľ.             | M50           | ≤ 50 %                                                                                                               |                                                               |  |  |  |
| naf            | M55           | ≤ 55 %                                                                                                               |                                                               |  |  |  |
| orr            | M60           | ≤ 60 %                                                                                                               |                                                               |  |  |  |
| ž              | M65           | ≤ 65 %                                                                                                               |                                                               |  |  |  |
|                | M65+          | > 65 % (maximum value to be stated)                                                                                  |                                                               |  |  |  |
|                | Ash, A (w     | <i>y</i> -% of dry basis) ISO 18122                                                                                  |                                                               |  |  |  |
|                | A1 0          | <pre></pre>                                                                                                          |                                                               |  |  |  |
|                | A1 5          | <pre></pre>                                                                                                          |                                                               |  |  |  |
|                | A2.0          | < 2.0 %                                                                                                              |                                                               |  |  |  |
|                | A3.0          | < 3.0 %                                                                                                              |                                                               |  |  |  |
|                | A5.0          | ≤ 5 0 %                                                                                                              |                                                               |  |  |  |
|                | A7.0          | ≤ 7,0 %                                                                                                              |                                                               |  |  |  |
|                | A10.0         | ≤ 10.0 %                                                                                                             |                                                               |  |  |  |
|                | A10.0+        | > 10.0 % (maximum value to be stated)                                                                                |                                                               |  |  |  |
|                | Shreddin      | g                                                                                                                    | To be stated if bark is shredded or not into pieces           |  |  |  |
|                | Net calor     | ific value, Q (MJ/kg or kWh/kg as received) or                                                                       | Minimum value to be stated                                    |  |  |  |
|                | energy d      | ensity, E (MJ/m <sup>3</sup> or kWh/m <sup>3</sup> loose) ISO 18125                                                  |                                                               |  |  |  |
|                | Nitrogen      | N (w-% of dry basis) ISO 16948                                                                                       |                                                               |  |  |  |
| é              | N0.5          | ≤ 0,5 %                                                                                                              | Normative:                                                    |  |  |  |
| ţ              | N1.0          | ≤ 1,0 %                                                                                                              | Chemically treated biomass (1.2.2; 1.3.2)                     |  |  |  |
| ma             | N2.0          | ≤ 2,0 %                                                                                                              | Informative:                                                  |  |  |  |
| Į0             | N3.0          | ≤ 3,0 %                                                                                                              | All fuels that are not chemically treated (see the            |  |  |  |
| in             | N3.0+         | > 3,0 % (maximum value to be stated)                                                                                 | exceptions above)                                             |  |  |  |
| /e/            | Chlorine,     | CI (w-% of dry basis) ISO 16994                                                                                      |                                                               |  |  |  |
| ativ           | CI0.02        | ≤ 0,02 %                                                                                                             | Normative:                                                    |  |  |  |
| Ë              | CI0.03        | ≤ 0,03 %                                                                                                             | Chemically treated biomass (1.2.2; 1.3.2)                     |  |  |  |
| lor            | CI0.07        | ≤ 0,07 %                                                                                                             | Informative:                                                  |  |  |  |
| ~              | CI0.10        | ≤ 0,10 %                                                                                                             | All fuels that are not chemically treated (see the            |  |  |  |
|                | CI0.10+       | > 0,10 % (maximum value to be stated)                                                                                | exceptions above)                                             |  |  |  |
|                | Bulk den      | sity (BD) (kg/m <sup>3</sup> as received) ISO 17828                                                                  |                                                               |  |  |  |
| ٨e             | BD250         | ≥ 250 kg/m <sup>3</sup>                                                                                              | Recommended to be stated if traded on a volume basis          |  |  |  |
| ati            | BD300         | $\geq 300 \text{ kg/m}^{\circ}$                                                                                      |                                                               |  |  |  |
| Ê              | BD350         | $\ge 350 \text{ kg/m}^{\circ}$                                                                                       |                                                               |  |  |  |
| foi            | BD400         | $\ge 400 \text{ kg/m}^{\circ}$                                                                                       |                                                               |  |  |  |
| <u>_</u>       | BD450         | ≥ 450 kg/m°                                                                                                          |                                                               |  |  |  |
|                | Ash melt      | ing behaviour $^{\circ}$ (°C) CEN/TS 15370-1 $^{[4]}$                                                                | Should be stated                                              |  |  |  |
| <sup>a</sup> T | he numerica   | al values (P-class) for dimension refer to the particle size                                                         | s (at least 95 % by mass) passing through the mentioned round |  |  |  |
| b I            | ole sieve siz | e (ISO 17827-1). If a sample fulfils the criteria of more the property class to be stated. Certain boilers require m | nan one class attach it to the lowest possible class.         |  |  |  |

It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated.





# Table 10 — Specification of properties for bales of straw, reed canary grass and Miscanthus (EN ISO 17225-1)

|    | Master table                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|----|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
|    | Origin:                                                 |                                                                                                                                      | 2.1.1.2 Cereal crop straw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 2.1.2.1 Whole plant (Reed canary grass and                          |  |  |
|    | According                                               | to 6.1 and Table 1                                                                                                                   | Miscanthus) 2122 Gras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s straw 2132 Oil seed crops stalks and                                |  |  |
|    | According                                               |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55 Straw, 2.1.5.2 Oil Seed Clops Starts and                           |  |  |
|    |                                                         |                                                                                                                                      | leaves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |  |  |
|    | Traded Form                                             | 1                                                                                                                                    | Round bale and square b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ale                                                                   |  |  |
|    | Round bale<br>D1<br>D2<br>Square bale<br>P1<br>P2<br>P3 | $L_1  \text{Heigh} \\ L_2  \text{Wid} \\ \hline \\ $ | the state state state state of state stat | Diameter<br>Length (L 3)<br>≤ 0,5 m<br>1,5 m - 2,8 m<br>1,0 m - 3,0 m |  |  |
|    | P3+                                                     | > 3 m (maximum values to state                                                                                                       | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,0 11 0,0 11                                                         |  |  |
|    | Bale densitv                                            | , BD (kg/m <sup>3</sup> as received) ISO 178                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |  |  |
|    | BD100                                                   | $\geq 100 \text{ kg/m}^3$                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | BD120                                                   | $\geq 120 \text{ kg/m}^3$                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | BD160                                                   | ≥ 160 kg/m <sup>3</sup>                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
| e  | BD180                                                   | $\geq 180 \text{ kg/m}^3$                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
| .2 | BD220                                                   | ≥ 220 kg/m <sup>3</sup>                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
| at | BD240+                                                  | $\geq 240 \text{ kg/m}^3$ (minimum value to                                                                                          | be stated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |  |  |
| Е  | Moisture. M                                             | (w-% as received) ISO 18134-1.                                                                                                       | SO 18134-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |  |  |
| οı | M10                                                     | ≤ 10 %                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
| z  | M15                                                     | ≤ 15 %                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | M20                                                     | ≤ 20 %                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | M25                                                     | < 25 %                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | M20                                                     | < 30 %                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | M20 I                                                   | $\geq 30\%$ (maximum value to be c                                                                                                   | ated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |  |  |
|    |                                                         |                                                                                                                                      | aicuj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |  |  |
|    | A511, A (W-%                                            | 01 UTY DASIS/ 130 10122                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | A4.0                                                    | ≥ 4 <sup>7</sup> /0<br>< 5 0/                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    |                                                         |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | A6.0                                                    | 50%                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | A7.0                                                    | ≤ / %                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | A8.0                                                    | ≤ 8 %                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | A10.0                                                   | l≤ 10 %                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | A10.0+                                                  | > 10 % (maximum value to be s                                                                                                        | ated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |  |  |
|    | Chlorine, Cl                                            | (w-% of dry basis) ISO 16994                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | Cl0.01                                                  | ≤ 0,01 %                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | Cl0.02                                                  | ≤ 0,02 %                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | CI0.03                                                  | ≤ 0,03 %                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | CI0.07                                                  | ≤ 0,07 %                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | CI0.10                                                  | ≤ 0,10 %                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    | Cl0.10+                                                 | > 0.10 % (maximum value to be                                                                                                        | stated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |  |  |
|    | Species of h                                            | iomass                                                                                                                               | Has to be stated (Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e: spring harvested reed capary grass                                 |  |  |
|    |                                                         |                                                                                                                                      | (Phalaris arundinacea L.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or Miscanthus ( <i>Miscanthus Giaanteus</i> ))                        |  |  |
|    | Net calorific                                           | value. Q (MJ/kg or kWh/kg as                                                                                                         | Minimum value to be state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed                                                                    |  |  |
|    | received) or e                                          | energy density. F (MI/m <sup>3</sup> or                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~~                                                                    |  |  |
|    | kWh/m <sup>3</sup> loose                                | a) ISO 18125                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |
|    |                                                         | ,                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |





| rmative   | Production method                                                                                                                                                                                                                         | It is recommended to declare production methods that influence the size of the straw particles in the bale. That is for instance whether the crop has been trashed by rotation or oscillation or whether it has been chopped. Harvested as a whole plant for Reed canary grass and Miscanthus. |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| nfo       | Binding type of bales                                                                                                                                                                                                                     | Tying material recommended to be specified (net binding, plastic line).                                                                                                                                                                                                                        |  |  |
| -         | Ash melting behaviour <sup>a</sup> (°C)<br>CEN/TS 15370-1 <sup>[4]</sup>                                                                                                                                                                  | Should be stated                                                                                                                                                                                                                                                                               |  |  |
| a It<br>h | <sup>a</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated. |                                                                                                                                                                                                                                                                                                |  |  |





### Table 11 — Specification of properties for energy grain (EN ISO 17225-1)

| Master table         |                                                                                                                                                                                                                                           |                                                                                                 |                                         |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
|                      | Origin:Ac                                                                                                                                                                                                                                 | cording to 6.1 and Table 1                                                                      | Herbaceous biomass (2.1.1.3)            |  |  |
|                      | Traded F                                                                                                                                                                                                                                  | orm                                                                                             | Grain (species to be stated e.g. wheat) |  |  |
|                      | Dimensic                                                                                                                                                                                                                                  | Dimensions (mm), Diameter (D) (5 w-% may have diameter over the class) ISO 17827-1, ISO 17827-2 |                                         |  |  |
|                      | D05                                                                                                                                                                                                                                       | 1 mm $\leq D \leq$ 5 mm                                                                         |                                         |  |  |
|                      | D10   3,15 mm $\le D \le 10$ mm                                                                                                                                                                                                           |                                                                                                 |                                         |  |  |
|                      | Moisture, M (w-% as received) ISO 18134-1, ISO 18134-2                                                                                                                                                                                    |                                                                                                 |                                         |  |  |
|                      | M10<br>M15                                                                                                                                                                                                                                | $\leq 10\%$                                                                                     |                                         |  |  |
|                      |                                                                                                                                                                                                                                           | $r \ge 15.76$                                                                                   |                                         |  |  |
|                      |                                                                                                                                                                                                                                           |                                                                                                 |                                         |  |  |
|                      | A2.0                                                                                                                                                                                                                                      | $\leq 2.0\%$                                                                                    |                                         |  |  |
|                      | A5.0                                                                                                                                                                                                                                      | <pre>≤ 3,0 %</pre>                                                                              |                                         |  |  |
| < e                  | A5.0+                                                                                                                                                                                                                                     | > 5,0 % (maximum value to be stated)                                                            |                                         |  |  |
| ati                  | Net calor                                                                                                                                                                                                                                 | ific value, Q (MJ/kg or kWh/kg as received)                                                     | Minimum value to be stated              |  |  |
| rm                   | ISO 1812                                                                                                                                                                                                                                  | 5                                                                                               |                                         |  |  |
| 0<br>Z               | Nitrogen,                                                                                                                                                                                                                                 | , N (w-% of dry basis) ISO 16948                                                                |                                         |  |  |
| -                    | N2.0                                                                                                                                                                                                                                      | $\leq 2.0 \%$                                                                                   |                                         |  |  |
|                      | N2.0+                                                                                                                                                                                                                                     | > 2,0 % (maximum value to be stated)                                                            |                                         |  |  |
|                      | Sulphur,                                                                                                                                                                                                                                  | Sulphur, S (w-% of dry basis) ISO 16994                                                         |                                         |  |  |
|                      | SU.20<br>S0.20+                                                                                                                                                                                                                           | $\leq 0.20\%$                                                                                   |                                         |  |  |
|                      | Chloring                                                                                                                                                                                                                                  | > 0,20 /0 (maximum value to be stated)                                                          |                                         |  |  |
|                      |                                                                                                                                                                                                                                           |                                                                                                 |                                         |  |  |
|                      |                                                                                                                                                                                                                                           | ≤ 0,00 %<br>< 0,10 %                                                                            |                                         |  |  |
|                      | CI0.15                                                                                                                                                                                                                                    | ≥ 0,10 /0<br>< 0.15 %                                                                           |                                         |  |  |
|                      | Cl0.15+                                                                                                                                                                                                                                   | $\leq$ 0,15 %<br>> 0.15 % (maximum value to be stated)                                          |                                         |  |  |
|                      | Amount                                                                                                                                                                                                                                    | of fines. <b>F</b> (w-% < 1 mm for $D$ 05 and w-% < 3                                           | 15 mm for D 10) ISO 17827-1             |  |  |
|                      | F1.0                                                                                                                                                                                                                                      | F1.0 $< 1.0\%$                                                                                  |                                         |  |  |
|                      | F1.0+                                                                                                                                                                                                                                     | + > 1,0 % (without additive)                                                                    |                                         |  |  |
| tive                 | Bulk den                                                                                                                                                                                                                                  | sity (BD) (kg/m <sup>3</sup> as received) ISO 17828                                             |                                         |  |  |
| mat                  | BD350                                                                                                                                                                                                                                     | ≥ 350 kg/m <sup>3</sup>                                                                         |                                         |  |  |
| for                  | BD450                                                                                                                                                                                                                                     | $\geq$ 450 kg/m <sup>3</sup>                                                                    |                                         |  |  |
| Ē                    | BD550                                                                                                                                                                                                                                     | ≥ 550 kg/m <sup>3</sup>                                                                         |                                         |  |  |
|                      | BD600                                                                                                                                                                                                                                     | $\geq 600 \text{ kg/m}^{\circ}$                                                                 |                                         |  |  |
|                      | BD650+                                                                                                                                                                                                                                    | > 650 kg/m° (minimum value to be stated)                                                        |                                         |  |  |
|                      | Ash melt                                                                                                                                                                                                                                  | ing behaviour <sup>a</sup> (°C) CEN/TS 15370-1 <sup>[4]</sup>                                   | Should be stated                        |  |  |
| <sup>a</sup> lt<br>h | <sup>a</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated. |                                                                                                 |                                         |  |  |

NOTE 9 When using cereal grain materials for combustion special attention should be paid to risk of corrosion in small- and medium-scale boilers and flue gas system. Be aware that different types and varieties of grains, grown under different conditions and soil type, may have a fuel ash composition, i.e. high content of P, K, that will capture chlorine (K will form K-phosphates instead of KCI) in the ash that will result in high hydrochloric emissions.





### Table 12 — Specification of properties for olive residues (EN ISO 17225-1)

|                                                          | Master table                                                                                                                                                                                                                                                                               |                                                                |                                                      |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--|--|--|
|                                                          | Origin: According to 6.1 and Table 1                                                                                                                                                                                                                                                       |                                                                | Fruit biomass (3.2.1.2, 3.2.1.4, 3.2.2.2, 3.2.2.4)   |  |  |  |
|                                                          | Traded Form                                                                                                                                                                                                                                                                                |                                                                | Grain or seed, kernel                                |  |  |  |
|                                                          | Dimensi                                                                                                                                                                                                                                                                                    | Dimensions (mm)                                                |                                                      |  |  |  |
|                                                          | Diameter                                                                                                                                                                                                                                                                                   | (D) <sup>a</sup>                                               |                                                      |  |  |  |
|                                                          | D 03                                                                                                                                                                                                                                                                                       | $1 \text{ mm} \le D \le 3,15 \text{ mm}$                       |                                                      |  |  |  |
| Normative                                                | D 05                                                                                                                                                                                                                                                                                       | $1 \text{ mm} \le D \le 5 \text{ mm}$                          |                                                      |  |  |  |
|                                                          | D 10                                                                                                                                                                                                                                                                                       | $1 \text{ mm} \le D \le 10 \text{ mm}$                         |                                                      |  |  |  |
|                                                          | D 10+                                                                                                                                                                                                                                                                                      | > 10 mm (maximum value to be stated)                           |                                                      |  |  |  |
|                                                          | Moisture, M (w-% as received) ISO 18134-1, ISO 18134-2                                                                                                                                                                                                                                     |                                                                |                                                      |  |  |  |
|                                                          | M10                                                                                                                                                                                                                                                                                        | $\leq 10\%$                                                    |                                                      |  |  |  |
|                                                          | M15                                                                                                                                                                                                                                                                                        | ≤ 15 %                                                         |                                                      |  |  |  |
|                                                          | Ash, A (w-% of dry basis) ISO 18122                                                                                                                                                                                                                                                        |                                                                |                                                      |  |  |  |
|                                                          | A1.5                                                                                                                                                                                                                                                                                       | ≤ 1,5 %                                                        |                                                      |  |  |  |
|                                                          | A2.0                                                                                                                                                                                                                                                                                       | $\leq 2,0$                                                     |                                                      |  |  |  |
|                                                          | A3.0                                                                                                                                                                                                                                                                                       | $\leq 3.0$                                                     |                                                      |  |  |  |
|                                                          | A5.0                                                                                                                                                                                                                                                                                       | $\leq 5,0\%$                                                   |                                                      |  |  |  |
|                                                          | A7.0                                                                                                                                                                                                                                                                                       | $\leq 1,0\%$                                                   |                                                      |  |  |  |
|                                                          | A10.0                                                                                                                                                                                                                                                                                      | $\leq 10.0\%$<br>> 10.0% (maximum value to be stated)          |                                                      |  |  |  |
|                                                          | Additivo                                                                                                                                                                                                                                                                                   |                                                                | Type and amount of additive to be stated             |  |  |  |
|                                                          | Auditive                                                                                                                                                                                                                                                                                   | S(w-76)                                                        |                                                      |  |  |  |
|                                                          | received)                                                                                                                                                                                                                                                                                  | ific value, Q <sup>-</sup> (MJ/kg of kwn/kg as)<br>ISO 18125   | Minimum value to be stated                           |  |  |  |
|                                                          | Nitrogen, N (w-% of dry basis) ISO 16948                                                                                                                                                                                                                                                   |                                                                |                                                      |  |  |  |
|                                                          | N1.0                                                                                                                                                                                                                                                                                       | ≤ 1,0 %                                                        |                                                      |  |  |  |
|                                                          | N1.5                                                                                                                                                                                                                                                                                       | ≤ 1,5 %                                                        |                                                      |  |  |  |
|                                                          | N2.0                                                                                                                                                                                                                                                                                       | $\leq$ 2,0 %                                                   |                                                      |  |  |  |
|                                                          | N3.0                                                                                                                                                                                                                                                                                       | $\leq 3.0 \%$                                                  |                                                      |  |  |  |
|                                                          | N3.0+   > 3,0 % (maximum value to be stated)                                                                                                                                                                                                                                               |                                                                |                                                      |  |  |  |
|                                                          | Amount of fines, F (w-%, < 1 mm) ISO 17827-1                                                                                                                                                                                                                                               |                                                                |                                                      |  |  |  |
|                                                          | F1.0<br>F1.0+                                                                                                                                                                                                                                                                              | $\leq 1.0\%$<br>> 1.0% (without additive)                      |                                                      |  |  |  |
|                                                          | Bulk der                                                                                                                                                                                                                                                                                   | <b>sity (BD)</b> as received (kg/m <sup>3</sup> loose)         | Recommended to be stated if traded on a volume basis |  |  |  |
|                                                          | ISO 1782                                                                                                                                                                                                                                                                                   | 28                                                             |                                                      |  |  |  |
| ve                                                       | Chlorine, CI (w-% of dry basis) ISO 16994                                                                                                                                                                                                                                                  |                                                                |                                                      |  |  |  |
| ati                                                      | CI 0.10                                                                                                                                                                                                                                                                                    | ≤ 0,10 %                                                       |                                                      |  |  |  |
| orn                                                      | CI 0.15                                                                                                                                                                                                                                                                                    | ≤ 0,15 %                                                       |                                                      |  |  |  |
| Infe                                                     | Cl0.15+                                                                                                                                                                                                                                                                                    | > 0,15 % (maximum value to be stated)                          |                                                      |  |  |  |
|                                                          | Sulphur, S (w-% of dry basis) ISO 16994                                                                                                                                                                                                                                                    |                                                                |                                                      |  |  |  |
|                                                          | S0.15                                                                                                                                                                                                                                                                                      | ≤ 0,15 %                                                       |                                                      |  |  |  |
|                                                          | S0.20                                                                                                                                                                                                                                                                                      | $\leq$ 0,20 %                                                  |                                                      |  |  |  |
|                                                          | S0.20+                                                                                                                                                                                                                                                                                     | > 0,20 % (maximum value to be stated)                          |                                                      |  |  |  |
|                                                          | Ash mel                                                                                                                                                                                                                                                                                    | ting behaviour <sup>c</sup> (°C) CEN/TS 15370-1 <sup>[4]</sup> | Should be stated                                     |  |  |  |
| <sup>a</sup> 5 v<br><sup>b</sup> Ad<br><sup>c</sup> It i | <ul> <li><sup>a</sup> 5 w-% may have diameter over the class.</li> <li><sup>b</sup> Additives can reduce net calorific value.</li> <li><sup>c</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT),</li> </ul> |                                                                |                                                      |  |  |  |

hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated.





## Table 13 — Specification of properties for fruit seeds (EN ISO 17225-1)

|                 | Master table                                                                                                                                                                                                                    |                                                          |                                                                    |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
|                 | Origin: According to 6.1 and Table 1                                                                                                                                                                                            |                                                          | Fruit biomass (3.1.1.3, 3.1.3, 3.2.1.2, 3.2.1.3, 3.2.2.2, 3.2.2.3) |  |  |  |
|                 | Traded Form                                                                                                                                                                                                                     |                                                          | Fruit seed or kernel                                               |  |  |  |
|                 | Dimensio                                                                                                                                                                                                                        | Dimensions (mm) ISO 17827-1, ISO 17827-1, ISO 17827-2    |                                                                    |  |  |  |
|                 | Diameter (D) (5 w-% may have diameter over the class)                                                                                                                                                                           |                                                          |                                                                    |  |  |  |
|                 | D 03                                                                                                                                                                                                                            | 1 mm $\leq D \leq$ 3,15 mm                               |                                                                    |  |  |  |
| Normative       | D 05                                                                                                                                                                                                                            | $1 \text{ mm} \le D \le 5 \text{ mm}$                    |                                                                    |  |  |  |
|                 | D 10                                                                                                                                                                                                                            | $1 \text{ mm} \le D \le 10 \text{ mm}$                   |                                                                    |  |  |  |
|                 | D 10+                                                                                                                                                                                                                           | D > 10 mm (maximum value to be stated)                   |                                                                    |  |  |  |
|                 | Moisture, M (w-% as received) ISO 18134-1, ISO 18134-2                                                                                                                                                                          |                                                          |                                                                    |  |  |  |
|                 | M10                                                                                                                                                                                                                             | M ≤ 10 %                                                 |                                                                    |  |  |  |
|                 | M15                                                                                                                                                                                                                             | M ≤ 15 %                                                 |                                                                    |  |  |  |
|                 | Ash, A (w-% of dry basis) ISO 18122                                                                                                                                                                                             |                                                          |                                                                    |  |  |  |
|                 | A1.5                                                                                                                                                                                                                            | ≤ 1,5 %                                                  |                                                                    |  |  |  |
|                 | A2.0                                                                                                                                                                                                                            | ≤ 2,0                                                    |                                                                    |  |  |  |
|                 | A3.0                                                                                                                                                                                                                            | $\leq$ 3,0                                               |                                                                    |  |  |  |
|                 | A5.0                                                                                                                                                                                                                            | $\leq$ 5,0 %                                             |                                                                    |  |  |  |
|                 | A10.0                                                                                                                                                                                                                           | $\leq 7,0\%$                                             |                                                                    |  |  |  |
|                 | A10.0                                                                                                                                                                                                                           | $\leq$ 10,0 % (maximum value to be stated)               |                                                                    |  |  |  |
|                 |                                                                                                                                                                                                                                 |                                                          | Turne and empount of additive to be stated                         |  |  |  |
|                 | Additives                                                                                                                                                                                                                       |                                                          | Type and amount of additive to be stated                           |  |  |  |
|                 | Net calor                                                                                                                                                                                                                       | ific value, Q ~ (MJ/kg or kWh/kg as                      | Minimum value to be stated                                         |  |  |  |
|                 | received)                                                                                                                                                                                                                       | , ISO 18125                                              |                                                                    |  |  |  |
|                 | Nitrogen, N (w-% of dry basis) ISO 16948                                                                                                                                                                                        |                                                          |                                                                    |  |  |  |
|                 | N1.0                                                                                                                                                                                                                            | ≤ 1,0 %                                                  |                                                                    |  |  |  |
|                 | N1.5                                                                                                                                                                                                                            | ≤ 1,5 %                                                  |                                                                    |  |  |  |
|                 | N2.0                                                                                                                                                                                                                            | ≤ 2,0 %                                                  |                                                                    |  |  |  |
|                 | N3.0                                                                                                                                                                                                                            | $\leq$ 3,0 %                                             |                                                                    |  |  |  |
|                 | 103.0+ $> 3.0%$ (maximum value to be stated)                                                                                                                                                                                    |                                                          |                                                                    |  |  |  |
|                 | Amount of fines, F (w-%, < 1 mm) ISO 17827-1                                                                                                                                                                                    |                                                          |                                                                    |  |  |  |
|                 | F1.0<br>F1.0+                                                                                                                                                                                                                   | ≤ 1,0 %<br>> 1.0 %                                       |                                                                    |  |  |  |
|                 | Bulk den                                                                                                                                                                                                                        | sity (BD) $(ka/m^3 as received)$ ISO 17828               | Recommended to be stated if traded on a volume basis               |  |  |  |
| Ð               | Chlorine Cl (w-% of dry basis) ISO 16994                                                                                                                                                                                        |                                                          |                                                                    |  |  |  |
| tiv             | CI 0 10                                                                                                                                                                                                                         |                                                          |                                                                    |  |  |  |
| ma              | CI 0 15                                                                                                                                                                                                                         | < 0.15 %                                                 |                                                                    |  |  |  |
| for             | CI 0.15+                                                                                                                                                                                                                        | > 0.15 % (maximum value to be stated)                    |                                                                    |  |  |  |
| Ч               | Sulphur, S (w-% of dry basis) ISO 16994                                                                                                                                                                                         |                                                          |                                                                    |  |  |  |
|                 | S0.15                                                                                                                                                                                                                           | ≤ 0,15 %                                                 |                                                                    |  |  |  |
|                 | S0.20                                                                                                                                                                                                                           | ≤ 0,20 %                                                 |                                                                    |  |  |  |
|                 | S0.20+                                                                                                                                                                                                                          | > 0,20 % (maximum value to be stated)                    |                                                                    |  |  |  |
|                 | Ash melt                                                                                                                                                                                                                        | ing behaviour $^{\text{b}}$ (°C) CEN/TS 15370-1 $^{[4]}$ | Should be stated                                                   |  |  |  |
| <sup>a</sup> A  | Additives can reduce net calorific value.                                                                                                                                                                                       |                                                          |                                                                    |  |  |  |
| <sup>⊳</sup> lt | It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT),<br>hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated. |                                                          |                                                                    |  |  |  |

NOTE 10 Fruit seeds include kernels, nuts and acorns.




## Table 14 — Specification of properties for charcoals (EN ISO 17225-1)

|                         | Master table                                                                              |                                                               |                                                  |                                                     |  |  |
|-------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--|--|
|                         | Origin:                                                                                   | According to 6.1 and Table 1                                  | Woody biomass (1.1 and 1.2.1); Fruit biomass (3) |                                                     |  |  |
|                         | Traded                                                                                    | Form (see Table 2)                                            | Charcoal                                         |                                                     |  |  |
|                         | Dimens                                                                                    | ions (mm)                                                     | 1                                                |                                                     |  |  |
|                         |                                                                                           | Main fraction (minimum 75 w-%), mm                            | Fines fraction, w-%<br>(< 10 mm)                 | Coarse fraction, (w-%), max. length of particle, mm |  |  |
|                         | P150                                                                                      | 16 mm <u>&lt;</u> P <u>&lt;</u> 150 mm                        | <u>&lt;</u> 7%                                   | < 10 % > 100 mm, and all < 150mm                    |  |  |
|                         | Moistur                                                                                   | <b>e, M</b> (w-% as received) ISO 18134-1, ISO 18             | 3134-2                                           |                                                     |  |  |
|                         | M8                                                                                        | ≤ 8 %                                                         |                                                  |                                                     |  |  |
| a tive                  | M10                                                                                       | ≤ 10 %                                                        |                                                  |                                                     |  |  |
|                         | Ash, A (w-% of dry basis) ISO 18122                                                       |                                                               |                                                  |                                                     |  |  |
|                         | A5.0                                                                                      | ≤ 5,0 %                                                       |                                                  |                                                     |  |  |
| m å                     | A8.0                                                                                      | ≤ 8,0 %                                                       |                                                  |                                                     |  |  |
| οr                      | A8.0+                                                                                     | > 8,0 % (maximum value to be stated)                          |                                                  |                                                     |  |  |
| z                       | Fixed carbon, C <sup>a</sup> (w-% of dry basis)                                           |                                                               |                                                  |                                                     |  |  |
|                         | C60                                                                                       | ≥ 60 %                                                        |                                                  |                                                     |  |  |
|                         | C75                                                                                       | ≥ 75 %                                                        |                                                  |                                                     |  |  |
|                         | Bulk density (BD) (kg/m <sup>3</sup> as received) ISO 17828                               |                                                               |                                                  |                                                     |  |  |
|                         | BD130                                                                                     | ≥ 130 kg/m <sup>3</sup>                                       |                                                  |                                                     |  |  |
|                         | BD150                                                                                     | ≥ 150 kg/m <sup>3</sup>                                       |                                                  |                                                     |  |  |
|                         | Net calorific value, Q (MJ/kg or kWh/kg as received) ISO 18125 Minimum value to be stated |                                                               |                                                  |                                                     |  |  |
| <sup>a</sup> Fix<br>sai | ed carbor<br>me moistu                                                                    | (%) is calculated by the following: 100 – [moisture re basis. | e (w-%) + ash (w-%) + volatile                   | matter (w-%)]. All percentage are on the            |  |  |





## Table 15 — Specification of properties for thermally treated biomass (e.g. mild<br/>form pyrolysis/torrefaction) (EN ISO 17225-1)

|                          | Master t                                                                                                                                                    | able                                                                                                                                                                            |                                                                                                                         |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                          | <b>Origin</b> :<br>According to 6.1 and Table 1                                                                                                             |                                                                                                                                                                                 | Woody biomass (1);<br>Herbaceous biomass (2);<br>Fruit biomass (3);<br>Aquatic biomass (4);<br>Blends and mixtures (5). |  |  |  |
|                          | Traded I                                                                                                                                                    | Form (see Table 2)                                                                                                                                                              | Thermally treated biomass                                                                                               |  |  |  |
|                          | Dimensi                                                                                                                                                     | o <b>ns</b> (mm)                                                                                                                                                                | to be stated                                                                                                            |  |  |  |
|                          | Moisture                                                                                                                                                    | e, <b>M</b> (w-% as received) ISO 18134-1, ISO 181                                                                                                                              | 34-2                                                                                                                    |  |  |  |
|                          | M3<br>M5<br>M8<br>M10<br>M10+                                                                                                                               | <ul> <li>≤ 3 %</li> <li>≤ 5 %</li> <li>≤ 8 %</li> <li>≤ 10 %</li> <li>&gt; 10 % (maximum value to be stated)</li> </ul>                                                         |                                                                                                                         |  |  |  |
|                          | Ash, A (                                                                                                                                                    | w-% of dry basis) ISO 18122                                                                                                                                                     |                                                                                                                         |  |  |  |
| Normative                | A0.5<br>A0.7<br>A1.0<br>A1.5<br>A2.0<br>A3.0<br>A5.0<br>A7.0<br>A10.0<br>A10.0+<br>BUlk dei<br>BD200<br>BD250<br>BD300                                      | $ \frac{4}{3} 00 \text{ kg/m}^{3} $ |                                                                                                                         |  |  |  |
|                          | Net calo                                                                                                                                                    | rific value, Q (MJ/kg or kWh/kg as received)<br>25                                                                                                                              | ≥ 17 MJ/kg (minimum value to be stated)                                                                                 |  |  |  |
|                          | Fixed ca                                                                                                                                                    | arbon, C (w-% of dry basis) <sup>a</sup>                                                                                                                                        |                                                                                                                         |  |  |  |
|                          | C20<br>C25<br>C30<br>C35<br>C40                                                                                                                             | ≥ 20 %<br>≥ 25 %<br>≥ 30 %<br>≥ 35 %<br>≥ 40 %                                                                                                                                  |                                                                                                                         |  |  |  |
|                          | Volatiles                                                                                                                                                   | s, VM, (w-% of dry basis), ISO 18123                                                                                                                                            | Maximum value to be stated                                                                                              |  |  |  |
| <sup>a</sup> Fixe<br>sam | Fixed carbon (%) is calculated by the following: 100 – [moisture (w-%) + ash (w-%) + volatile matter (w-%)]. All percentage are on the same moisture basis. |                                                                                                                                                                                 |                                                                                                                         |  |  |  |

NOTE 11 Thermally treated biomass briquettes and pellets are specified in Table 3 and Table 4.





## Table 16 — General master table for specification of properties for other solid biofuels (EN ISO 17225-1)

|                           | General Master Table                                     |                                                                                                |                                                                                                                                                            |  |  |
|---------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                           | Origin                                                   |                                                                                                | To be specified in accordance with to 6.1 and Table 1, as detailed as needed.                                                                              |  |  |
|                           | Traded Form                                              |                                                                                                | A short description of the form of the biofuel (see Table 2 for guidelines).                                                                               |  |  |
|                           | Dimensions                                               | (mm)                                                                                           | If dimensions are not suitable to express as diameter and                                                                                                  |  |  |
|                           | D <sub>x</sub>                                           | x = Maximum diameter                                                                           | length other formats may be used, but shall then be clearly stated.                                                                                        |  |  |
| v e                       | Ly                                                       | y = Maximum length                                                                             |                                                                                                                                                            |  |  |
| mati                      | Moisture, M<br>ISO 18134-2                               | (w-% as received) ISO 18134-1,                                                                 | Recommended to be stated as a class: M10, M15, M20, M25, M30; M35, M40, M45, M50; M55, M60; M65, M65+ (maximum                                             |  |  |
| Nor                       | MXX                                                      | ≤ XX %                                                                                         | value to be stated)                                                                                                                                        |  |  |
|                           | <b>Ash, A</b> (w-%                                       | of dry basis) ISO 18122                                                                        | Recommended to be stated as a class: A0.5, A0.7, A1.0,                                                                                                     |  |  |
|                           | AXX.X                                                    | ≤ XX,X %                                                                                       | A1.5, A2.0, A3.0, A5.0, A7.0, A10, A10+ (maximum value to be stated)                                                                                       |  |  |
|                           | Additives (w                                             | v-% of dry basis)                                                                              | If any type of additive is added to the fuel, amount and type                                                                                              |  |  |
|                           | Type and co                                              | ntent of additives to be stated                                                                | The maximum amount of additive is 20 w-% of in solid biofuels. If amount is greater, then solid biofuel is a blend.                                        |  |  |
| tive                      | Net calorific<br>received) or<br>kWh/m <sup>3</sup> loos | <b>value, Q</b> (MJ/kg or kWh/kg as<br>energy density, E (MJ/m <sup>3</sup> or<br>e) ISO 18125 | Minimum value to be stated.                                                                                                                                |  |  |
|                           | Bulk density<br>ISO 17828                                | <b>/ (BD)</b> (kg/m <sup>3</sup> as received)                                                  | Recommended to be stated in the classes (minimum value):<br>BD200, BD250, BD300, BD300, BD350, BD400, BD450,<br>BD500, BD550, BD600, BD650, BD750, DB850+. |  |  |
| o r m 8                   | Nitrogen, N                                              | (w-% of dry basis) ISO 16948                                                                   | Nitrogen is normative only for chemically treated biomass.<br>Recommended to be stated as a class N0.5, N1.0, N1.5,                                        |  |  |
| inf                       | NX.X                                                     | ≤ X,X %                                                                                        | N2.0, N3.0, N3.0+ (maximum value to be stated)                                                                                                             |  |  |
| ive/                      | Sulphur, S (                                             | w-% of dry basis) ISO 16994                                                                    | Sulphur is normative only for chemically treated biomass or if                                                                                             |  |  |
| rmat                      | SX.XX                                                    | ≤ X,XX %                                                                                       | to be stated as a class S0,03, S0,05, S0,1, S0,2 and S0,2+ (if $S > 0,2$ % maximum value to be stated)                                                     |  |  |
| N o                       | Chlorine, Cl<br>ISO 16994                                | (weight of dry basis, w-%)                                                                     | Chlorine is normative only for chemically treated biomass.<br>Recommended to be state as a class: Cl 0.01, Cl 0.02, Cl                                     |  |  |
|                           | CIX.XX                                                   | ≤ X,XX %                                                                                       | value to be stated)                                                                                                                                        |  |  |
|                           | Further spec                                             | ification of dimensions                                                                        | It is recommended that maximum allowed amount of fine and coarse particles of the fuel should be stated.                                                   |  |  |
|                           | Others e.g. n<br>elements (IS                            | najor (ISO 16967) and minor<br>O 16968)                                                        | Properties that are specific to the actual solid biofuel and considered as containing useful information.                                                  |  |  |
| Infor                     | mative                                                   |                                                                                                |                                                                                                                                                            |  |  |
|                           | Ash melting<br>CEN/TS 153                                | <b>behaviour</b> <sup>a</sup> (°C),<br>70-1 <sup>[4]</sup>                                     | Should be stated                                                                                                                                           |  |  |
| <sup>a</sup> It is<br>hem | recommended thisphere temper                             | that all characteristic temperatures (shrin<br>ature (HT) and flow temperature (FT)) ir        | nkage starting temperature (SST), deformation temperature (DT),<br>n oxidizing conditions should be stated.                                                |  |  |

NOTE 12 Property classes from Table 3 to 15 can be used if also appropriate in this master table.





## Table 17 — Specification of graded wood pellets for commercial and residential applications (EN ISO 17225-2)

|          | <b>Property class,</b> Analysis method                                                               | Unit                              | A1                                                                            | A2                                                                                                                                               | В                                                                                                                                                              |
|----------|------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Origin and source,<br>ISO 17225-1                                                                    |                                   | 1.1.3 Stemwood<br>1.2.1 Chemically<br>untreated wood<br>residues <sup>a</sup> | 1.1.1 Whole trees<br>without roots<br>1.1.3 Stemwood<br>1.1.4 Logging<br>residues<br>1.2.1 Chemically<br>untreated wood<br>residues <sup>a</sup> | 1.1 Forest, plantation<br>and other virgin wood<br>1.2 By-products and<br>residues from wood<br>processing industry<br>1.3.1 Chemically<br>untreated used wood |
|          | <b>Diameter, D<sup>b</sup></b> and <b>Length L</b> <sup>, c</sup><br>ISO 17829<br>According Figure 1 | mm                                | D06, 6 ± 1;<br>3,15 < L ≤ 40<br>D08, 8 ± 1;<br>3,15 < L ≤ 40                  | D06, 6 ± 1;<br>3,15 < L ≤ 40<br>D08, 8 ± 1;<br>3,15 < L ≤ 40                                                                                     | D06, 6 ± 1;<br>3,15 < L ≤ 40<br>D08, 8 ± 1;<br>3,15 < L ≤ 40                                                                                                   |
|          | <b>Moisture, M,</b><br>ISO 18134-1, ISO 18134-2                                                      | w-% as received, wet basis        | M10 ≤ 10                                                                      | M10 ≤ 10                                                                                                                                         | M10 ≤ 10                                                                                                                                                       |
|          | <b>Ash, A</b> <sup>d</sup> , ISO 18122                                                               | w-% dry                           | A0.7 ≤ 0,7                                                                    | A1.2 ≤ 1,2                                                                                                                                       | A2.0 ≤ 2,0                                                                                                                                                     |
|          | Mechanical durability, DU,<br>ISO 17831-1                                                            | w-% as received                   | DU97.5 ≥ 97,5                                                                 | DU97.5 ≥ 97,5                                                                                                                                    | DU96.5 ≥ 96,5                                                                                                                                                  |
| ormative | <b>Fines, F</b> <sup>°</sup> , ISO 18846                                                             | w-% as received                   | F1.0 ≤ 1,0                                                                    | F1.0 ≤ 1,0                                                                                                                                       | F1.0 ≤ 1,0                                                                                                                                                     |
|          | Additives <sup>f</sup>                                                                               | w-% as received                   | ≤ 2<br>Type and amount<br>to be stated                                        | ≤ 2<br>Type and amount<br>to be stated                                                                                                           | ≤ 2<br>Type and amount<br>to be stated                                                                                                                         |
| z        | Net calorific value, Q,<br>ISO 18125                                                                 | MJ/kg or<br>kWh/kg<br>as received | Q16.5 ≥ 16,5 or<br>Q4.6 ≥ 4,6                                                 | Q16.5 ≥ 16,5 or<br>Q4.6 ≥ 4,6                                                                                                                    | Q16.5 ≥ 16,5 or<br>Q4.6 ≥ 4,6                                                                                                                                  |
|          | Bulk density, BD <sup>9</sup> ,<br>ISO 17828                                                         | kg/m <sup>3</sup><br>as received  | BD600 ≥ 600                                                                   | BD600 ≥ 600                                                                                                                                      | BD600 ≥ 600                                                                                                                                                    |
|          | Nitrogen, N, ISO 16948                                                                               | w-% dry                           | N0.3 ≤ 0,3                                                                    | N0.5 ≤ 0,5                                                                                                                                       | N1.0 ≤ 1,0                                                                                                                                                     |
|          | <b>Sulphur , S</b> , ISO 16994                                                                       | w-% dry                           | S0.04 ≤ 0,04                                                                  | S0.05 ≤ 0,05                                                                                                                                     | S0.05 ≤ 0,05                                                                                                                                                   |
|          | Chlorine, CI, ISO 16994                                                                              | w-% dry                           | Cl0.02 ≤ 0,02                                                                 | Cl0.02 ≤ 0,02                                                                                                                                    | Cl0.03 ≤ 0,03                                                                                                                                                  |
|          | Arsenic, As, ISO 16968                                                                               | mg/kg dry                         | ≤ 1                                                                           | ≤ 1                                                                                                                                              | ≤ 1                                                                                                                                                            |
|          | Cadmium, Cd, ISO 16968                                                                               | mg/kg dry                         | ≤ 0,5                                                                         | ≤ 0,5                                                                                                                                            | ≤ 0,5                                                                                                                                                          |
|          | Chromium, Cr, ISO 16968                                                                              | mg/kg dry                         | ≤ 10                                                                          | ≤ 10                                                                                                                                             | ≤ 10                                                                                                                                                           |
|          | Copper, Cu, ISO 16968                                                                                | mg/kg dry                         | ≤ 10                                                                          | ≤ 10                                                                                                                                             | ≤ 10                                                                                                                                                           |
|          | Lead, Pb, ISO 16968                                                                                  | mg/kg dry                         | ≤ 10                                                                          | ≤ 10                                                                                                                                             | ≤ 10                                                                                                                                                           |
|          | Mercury, Hg, ISO 16968                                                                               | mg/kg dry                         | ≤ 0,1                                                                         | ≤ 0,1                                                                                                                                            | ≤ 0,1                                                                                                                                                          |
|          | Nickel, Ni, ISO 16968                                                                                | mg/kg dry                         | ≤ 10                                                                          | ≤ 10                                                                                                                                             | ≤ 10                                                                                                                                                           |
|          | Zinc, Zn, ISO 16968                                                                                  | mg/kg dry                         | ≤ 100                                                                         | ≤ 100                                                                                                                                            | ≤ 100                                                                                                                                                          |
|          | Informative:<br>Ash melting behaviour <sup>h</sup> ,<br>CEN/TS 15370-1 <sup>[4]</sup>                | °C                                | Should be<br>stated                                                           | Should be stated                                                                                                                                 | Should be stated                                                                                                                                               |

<sup>a</sup> Negligible levels of glue, grease and other timber production additives used in sawmills during production of timber and timber product from virgin wood are acceptable, if all chemical parameters of the pellets are clearly within the limits and/or concentrations are too small to be concerned with.

<sup>b</sup> Selected size D06 or D08 of pellets to be stated.

<sup>c</sup> Amount of pellets longer than 40 mm can be 1 w-%. Maximum length shall be ≤ 45 mm. Pellets are longer than 3,15 mm, if they stay on a round hole-sieve of 3,15 mm. Amount of pellets shorter than 10 mm, w-% recommended to be stated.

<sup>d</sup> For household burners and stoves an ash content <0.5% is recommended.

<sup>e</sup> At factory gate in bulk transport (at the time of loading) and in small (up to 20 kg) and large sacks (at time of packing or when delivering to end-user).

<sup>f</sup> Type of additives to aid production, delivery or combustion (e.g. pressing aids, slagging inhibitors or any other additives like starch, corn flour, potato flour, vegetable oil, lignin).

<sup>9</sup> It is recommended actual value of bulk density to be stated. This is especially important for household burners and stoves with no automatic control of air supply and thus are sensitive to variations in bulk density. Maximum value of bulk density 750 kg/m<sup>3</sup>.

<sup>h</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated. Pre-ashing temperature other than 550 °C should be stated.





|      | Property class, Analysis method                                                         | Unit                          | 11                                                                                                                | 12                                                                                                                                                | 13                                                                                                                                                                     |
|------|-----------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Origin and source,<br>ISO 17225-1                                                       |                               | 1.1 Forest,<br>plantation and<br>other virgin wood<br>1.2.1 Chemically<br>untreated wood<br>residues <sup>a</sup> | 1.1 Forest,<br>plantation and other<br>virgin wood<br>1.2.1 Chemically<br>untreated wood<br>residues <sup>a</sup>                                 | 1.1 Forest, plantation<br>and other virgin wood<br>1.2 By-products and<br>residues from wood<br>processing industry<br>1.3.1 Chemically<br>untreated used wood         |
|      | Diameter, D <sup>b</sup> and Length L <sup>°</sup> ,<br>ISO 17829<br>According Figure 1 | mm                            | D06, 6 ± 1;<br>3,15 < L ≤ 40<br>D08, 8 ± 1;<br>3,15 < L ≤ 40                                                      | D06, $6 \pm 1$ ;<br>3,15 < L $\leq$ 40<br>D08, $8 \pm 1$ ;<br>3,15 < L $\leq$ 40<br>D10, 10 $\pm 1$ ;<br>3,15 < L $\leq$ 40<br>3,15 < L $\leq$ 40 | D06, $6 \pm 1$ ;<br>3,15 < L $\leq 40$<br>D08, $8 \pm 1$ ;<br>3,15 < L $\leq 40$<br>D10, $10 \pm 1$ ;<br>3,15 < L $\leq 40$<br>D12, $12 \pm 1$ ;<br>3,15 < L $\leq 40$ |
|      | <b>Moisture, M</b> ,<br>ISO 18134-1, ISO 18134-2                                        | w-% as received,<br>wet basis | M10 ≤ 10                                                                                                          | M10 ≤ 10                                                                                                                                          | M10 ≤ 10                                                                                                                                                               |
|      | Ash. A. ISO 18122                                                                       | w-% drv                       | A1.0 ≤ 1.0                                                                                                        | A1.5 ≤ 1.5                                                                                                                                        | A3.0 ≤ 3.0                                                                                                                                                             |
| ive  | Mechanical durability, DU,<br>ISO 17831-1                                               | w-% as received               | 97,5 ≤ DU ≤ 99,0                                                                                                  | 97,0 ≤ DU ≤ 99,0                                                                                                                                  | 96,5 ≤ DU ≤ 99,0                                                                                                                                                       |
| nat  | Fines, F <sup>d</sup> , ISO 18846                                                       | w-% as received               | F4.0 ≤ 4,0                                                                                                        | F5.0 ≤ 5,0                                                                                                                                        | F6.0 ≤ 6,0                                                                                                                                                             |
| Norm | Additives <sup>e</sup>                                                                  | w-% as received               | < 3<br>Type and amount<br>to be stated                                                                            | < 3<br>Type and amount<br>to be stated                                                                                                            | < 3<br>Type and amount<br>to be stated                                                                                                                                 |
|      | Net calorific value, Q,<br>ISO 18125                                                    | MJ/kg<br>as received          | Q16.5 ≥ 16,5                                                                                                      | Q16.5 ≥ 16,5                                                                                                                                      | Q16.5 ≥ 16,5                                                                                                                                                           |
|      | Bulk density, BD <sup>f</sup> , ISO 17828                                               | kg/m <sup>3</sup>             | BD600 ≥ 600                                                                                                       | BD600 ≥ 600                                                                                                                                       | BD600 ≥ 600                                                                                                                                                            |
|      | Nitrogen, N, ISO 16948                                                                  | w-% dry                       | N0.3 ≤ 0,3                                                                                                        | N0.3 ≤ 0,3                                                                                                                                        | N0.6 ≤ 0,6                                                                                                                                                             |
|      | Particle size distribution of<br>disintegrated pellets,<br>ISO 17830                    | w-% dry                       | ≥ 99% (< 3,15 mm)<br>≥ 95% (< 2,0 mm)<br>≥ 60% (< 1,0 mm)                                                         | ≥ 98% (< 3,15 mm)<br>≥ 90% (< 2,0 mm)<br>≥ 50% (< 1,0 mm)                                                                                         | ≥ 97% (< 3,15 mm)<br>≥ 85% (< 2,0 mm)<br>≥ 40% (< 1,0 mm)                                                                                                              |
|      | Sulphur , S, ISO 16994                                                                  | w-% dry                       | S0.05 ≤ 0,05                                                                                                      | S0.05 ≤ 0,05                                                                                                                                      | S0.05 ≤ 0,05                                                                                                                                                           |
|      | Chlorine, CI, ISO 16994                                                                 | w-% dry                       | Cl0.03 ≤ 0,03                                                                                                     | Cl0.05 ≤ 0,05                                                                                                                                     | Cl0.1 ≤ 0,1                                                                                                                                                            |
|      | Arsenic, As, ISO 16968                                                                  | mg/kg dry                     | ≤2                                                                                                                | ≤ 2                                                                                                                                               | ≤ 2                                                                                                                                                                    |
|      | Cadmium, Cd, ISO 16968                                                                  | mg/kg dry                     | ≤ 1,0                                                                                                             | ≤ 1,0                                                                                                                                             | ≤ 1,0                                                                                                                                                                  |
|      | Chromium, Cr, ISO 16968                                                                 | mg/kg dry                     | ≤ 15                                                                                                              | ≤ 15                                                                                                                                              | ≤ 15                                                                                                                                                                   |
|      | Copper, Cu, ISO 16968                                                                   | mg/kg dry                     | ≤ 20                                                                                                              | ≤ 20                                                                                                                                              | ≤ 20                                                                                                                                                                   |
|      | Lead, Pb, ISO 16968                                                                     | mg/kg dry                     | ≤ 20                                                                                                              | ≤ 20                                                                                                                                              | ≤ 20                                                                                                                                                                   |
|      | Mercury, Hg, ISO 16968                                                                  | mg/kg dry                     | ≤ 0,1                                                                                                             | ≤ 0,1                                                                                                                                             | ≤ 0,1                                                                                                                                                                  |
|      | Zinc, Zn, ISO 16968                                                                     | mg/kg dry                     | ≤ 200                                                                                                             | ≤ 200                                                                                                                                             | ≤ 200                                                                                                                                                                  |
|      | Informative<br>Ash melting behaviour <sup>g</sup> ,                                     | °C                            | Should be stated                                                                                                  | Should be stated                                                                                                                                  | Should be stated                                                                                                                                                       |
|      | CEN/TS 15370-1 <sup>[4]</sup>                                                           |                               |                                                                                                                   |                                                                                                                                                   |                                                                                                                                                                        |

## Table 18 — Specification of graded wood pellets for industrial use (EN ISO 17225-2)

<sup>a</sup> Negligible levels of glue, grease and other timber production additives used in sawmills during production of timber and timber product from virgin wood are acceptable if all chemical parameters of the pellets are clearly within the limits and/or concentrations are too small to be concerned with.

<sup>b</sup> Selected size D06, D08, D10 or D12 of pellets to be stated.

<sup>c</sup> Amount of pellets longer than 40 mm can be 1 w-%. Maximum length shall be ≤ 45 mm. Pellets are longer than 3,15 mm, if they stay on a round hole-sieve of 3,15 mm. Amount of pellets shorter than 10 mm, w-% recommended to be stated.

<sup>d</sup> At factory gate in bulk transport (at the time of loading) and in small (up to 20 kg) and large sacks (at time of packing or when delivering to end-user).

<sup>e</sup> Type of additives to aid production, delivery or combustion (e.g. pressing aids, slagging inhibitors or any other additives like starch, corn flour, potato flour, vegetable oil, lignin).

<sup>f</sup> Maximum bulk density is 750 kg/m<sup>3</sup>.

<sup>g</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated.







## Table 19 – Specification of graded wood briquettes (EN ISO 17225-3)

|         | Property class,                                           | class, Units A                    |                                                                                                                         | B <sup>a</sup>                                                                                                                                |                                                                                                                                                                |  |
|---------|-----------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Analysis method                                           |                                   | 1                                                                                                                       | 2                                                                                                                                             |                                                                                                                                                                |  |
|         | <b>Origin and source</b> ,<br>ISO 17225-1                 |                                   | 1.1.3 Stemwood<br>1.2.1 Chemically<br>untreated wood<br>residues <sup>b</sup>                                           | 1.1.1 Whole trees<br>without roots<br>1.1.3 Stemwood<br>1.1.4 Logging residues<br>1.2.1 Chemically<br>untreated wood<br>residues <sup>b</sup> | 1.1 Forest, plantation<br>and other virgin wood<br>1.2 By-products and<br>residues from wood<br>processing industry<br>1.3.1 Chemically<br>untreated used wood |  |
|         | Diameter (D) or length $(L_1)$ , width $(L_2)$ and height | mm                                | Diameter, width, height and length to be stated                                                                         | Diameter, width, height and length to be stated                                                                                               | Diameter, width, height and length to be stated                                                                                                                |  |
|         | ( <i>L</i> <sub>3</sub> )                                 | Shape                             | Specify a                                                                                                               | according to Figure e.g. 1                                                                                                                    | or 2, etc.                                                                                                                                                     |  |
|         | According Figure                                          |                                   | $ \begin{array}{c c} \hline \\ \hline $ |                                                                                                                                               |                                                                                                                                                                |  |
|         |                                                           |                                   | $L_{1}$                                                                                                                 |                                                                                                                                               |                                                                                                                                                                |  |
| e.      |                                                           |                                   |                                                                                                                         |                                                                                                                                               | ~                                                                                                                                                              |  |
| ormativ | <b>Moisture, M</b> ,<br>ISO 18134-1, ISO 18134-2          | w-%<br>as received                | M12 ≤ 12                                                                                                                | M15 ≤ 15                                                                                                                                      | M15 ≤ 15                                                                                                                                                       |  |
| ž       | Ash, A, ISO 18122                                         | w-% drv                           | A1.0 ≤ 1.0                                                                                                              | A1.5 ≤ 1.5                                                                                                                                    | A3.0 ≤ 3.0                                                                                                                                                     |  |
|         | Particle density, DE,<br>ISO 18847                        | g/cm <sup>3</sup><br>as received  | DE1.0 ≥ 1,0                                                                                                             | DE0.9 ≥ 0,9                                                                                                                                   | DE0.9 ≥ 0,9                                                                                                                                                    |  |
|         | Additives <sup>C</sup>                                    | w-% dry                           | ≤ 2<br>Type and amount to<br>be stated                                                                                  | ≤ 2<br>Type and amount to<br>be stated                                                                                                        | ≤ 2<br>Type and amount to<br>be stated                                                                                                                         |  |
|         | <b>Net calorific value, Q</b> , <sup>d</sup><br>ISO 18125 | MJ/kg or<br>kWh/kg<br>as received | Q15.5 ≥ 15,5 or<br>Q4.3 ≥ 4,3                                                                                           | Q15.3 ≥ 15,3 or<br>Q4.25 ≥ 4,25                                                                                                               | Q14.9 ≥ 14,9 or<br>Q4.15 ≥ 4,15                                                                                                                                |  |
|         | Nitrogen, N, ISO 16948                                    | w-% dry                           | N0.3 ≤ 0,3                                                                                                              | N0.5 ≤ 0,5                                                                                                                                    | N1.0 <u>≤</u> 1,0                                                                                                                                              |  |
|         | Sulphur, S, ISO 16994                                     | w-% dry                           | S0.04 ≤ 0,04                                                                                                            | S0.04 ≤ 0,04                                                                                                                                  | S0.05 ≤ 0,05                                                                                                                                                   |  |
|         | Chlorine, CI, ISO 16994                                   | w-% dry                           | Cl0.02 ≤ 0,02                                                                                                           | Cl0.02 ≤ 0,02                                                                                                                                 | Cl0.03 ≤ 0,03                                                                                                                                                  |  |
|         | Arsenic, As, ISO 16968                                    | mg/kg dry                         | ≤ 1                                                                                                                     | ≤1                                                                                                                                            | ≤ 1                                                                                                                                                            |  |
|         | Cadmium, Cd, ISO 16968                                    | mg/kg dry                         | ≤ 0,5                                                                                                                   | ≤ 0,5                                                                                                                                         | ≤ 0,5                                                                                                                                                          |  |
|         | Chromium, Cr, ISO 16968                                   | mg/kg dry                         | ≤ 10                                                                                                                    | ≤ 10                                                                                                                                          | ≤ 10                                                                                                                                                           |  |
|         | Copper, Cu, ISO 16968                                     | mg/kg dry                         | ≤ 10                                                                                                                    | ≤ 10                                                                                                                                          | ≤ 10                                                                                                                                                           |  |
|         | Lead, Pb, ISO 16968                                       | mg/kg dry                         | ≤ 10                                                                                                                    | ≤ 10                                                                                                                                          | ≤ 10                                                                                                                                                           |  |
|         | Mercury, Hg, ISO 16968                                    | mg/kg dry                         | ≤ 0,1                                                                                                                   | ≤ 0,1                                                                                                                                         | ≤ 0,1                                                                                                                                                          |  |
|         | Nickel, Ni, ISO 16968                                     | mg/kg dry                         | ≤ 10                                                                                                                    | ≤ 10                                                                                                                                          | ≤ 10                                                                                                                                                           |  |
|         | Zinc, Zn, ISO 16968                                       | mg/kg dry                         | ≤ 100                                                                                                                   | ≤ 100                                                                                                                                         | ≤ 100                                                                                                                                                          |  |





| Informative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surface area of briquettes, including the hole surface if any | cm²/kg | Should be stated | Should be stated | Should be stated |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------|------------------|------------------|------------------|
| <ul> <li><sup>a</sup> Class B is not recommended for baking ovens.</li> <li><sup>b</sup> Negligible levels of glue, grease and other timber production additives used in sawmills during production of timber and timber product from virgin wood are acceptable if all chemical parameters of the briquettes are clearly within the limits and concentrations are too small to be concerned with.</li> <li><sup>c</sup> Type of additives to aid production, delivery or combustion (e.g. pressing aids, slagging inhibitors or any other additives like starsh, corn</li> </ul> |                                                               |        |                  |                  |                  |

flour, potato flour, vegetable oil, lignin). <sup>d</sup> See Annex D from ISO 17225-1 for calculation of net calorific value as received.

NOTE The combustion time may also be an important parameter for further characterisation of the combustion behaviour. The combustion time indicates in which time the energy of the briquettes is released. The combustion time depends on both the shape and density of the briquettes as well as the air ratio.





|                 | Property class,                                                                                                                              | Unit                                   | A                                                                                                                                                |                                                                                                                                                  | В                                                                                                                    |                                                                                                                                                                                          |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Analysis method                                                                                                                              |                                        | 1                                                                                                                                                | 2                                                                                                                                                | 1                                                                                                                    | 2                                                                                                                                                                                        |
|                 | Origin and source,<br>ISO 17225-1                                                                                                            |                                        | 1.1.1 Whole trees<br>without roots <sup>a</sup><br>1.1.3 Stemwood<br>1.1.4 Logging<br>residues<br>1.2.1 Chemically<br>untreated wood<br>residues | 1.1.1 Whole trees<br>without roots <sup>a</sup><br>1.1.3 Stemwood<br>1.1.4 Logging<br>residues<br>1.2.1 Chemically<br>untreated wood<br>residues | 1.1 Forest,<br>plantation and<br>other virgin<br>wood <sup>b</sup><br>1.2.1 Chemically<br>untreated wood<br>residues | 1.1 Forest,<br>plantation and<br>other virgin<br>wood <sup>b</sup><br>1.2. By-products<br>and residues from<br>wood processing<br>industry<br>1.3.1.Chemically<br>untreated used<br>wood |
|                 | Particle size, P<br>ISO 17827-1                                                                                                              | mm                                     | to be selected fror                                                                                                                              | n Table 4 S classes                                                                                                                              | to be selected<br>clas                                                                                               | from Table 4 S<br>ses                                                                                                                                                                    |
|                 | <b>Moisture, M</b> <sup>c</sup> ,<br>ISO 18134-1,<br>ISO 18134-2                                                                             | w-%                                    | M10 ≤ 10<br>M25 <u>&lt;</u> 25                                                                                                                   | M35 <u>&lt;</u> 35                                                                                                                               | Maximum value to be stated                                                                                           |                                                                                                                                                                                          |
|                 | <b>Ash, A</b> ,<br>ISO 18122                                                                                                                 | w-% dry                                | A1.0 <u>&lt;</u> 1,0                                                                                                                             | A1.5 <u>&lt;</u> 1,5                                                                                                                             | A3.0 ≤ 3,0                                                                                                           |                                                                                                                                                                                          |
| itive           | Bulk density, BD <sup>d</sup> ,<br>ISO 17828                                                                                                 | kg/loose m <sup>3</sup><br>as received | $\begin{array}{l} BD150 \geq 150 \\ BD200 \geq 200 \\ BD250 \geq 250 \end{array}$                                                                | BD150 ≥ 150<br>BD200 ≥ 200<br>BD250 ≥ 250<br>BD300 > 300                                                                                         | Minimum value to be stated                                                                                           |                                                                                                                                                                                          |
| orm             | Nitrogen, N,<br>ISO 16948                                                                                                                    | w-% dry                                | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | N1.0                                                                                                                 | <u>&lt;</u> 1,0                                                                                                                                                                          |
| Ž               | Sulphur , S,<br>ISO 16994                                                                                                                    | w-% dry                                | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | S0.1                                                                                                                 | <u>&lt;</u> 0,1                                                                                                                                                                          |
|                 | Chlorine, Cl,<br>ISO 16994                                                                                                                   | w-% dry                                | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | Cl0.05                                                                                                               | <u>&lt;</u> 0,05                                                                                                                                                                         |
|                 | A <b>rsenic, As</b> ,<br>ISO 16968                                                                                                           | mg/kg dry                              | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | <u>&lt;</u>                                                                                                          | 1                                                                                                                                                                                        |
|                 | Cadmium, Cd,<br>ISO 16968                                                                                                                    | mg/kg dry                              | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | <u>&lt;</u> 2                                                                                                        | 2,0                                                                                                                                                                                      |
|                 | Chromium, Cr,<br>ISO 16968                                                                                                                   | mg/kg dry                              | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | <u>&lt;</u>                                                                                                          | 10                                                                                                                                                                                       |
|                 | <b>Copper, Cu</b> ,<br>ISO 16968                                                                                                             | mg/kg dry                              | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | <u> </u>                                                                                                             | 10                                                                                                                                                                                       |
|                 | Lead, Pb,<br>ISO 16968                                                                                                                       | mg/kg dry                              | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | <u>&lt;</u>                                                                                                          | 10                                                                                                                                                                                       |
|                 | Mercury, Hg,<br>ISO 16968                                                                                                                    | mg/kg dry                              | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | <u>&lt;</u> (                                                                                                        | D,1                                                                                                                                                                                      |
|                 | Nickel, Ni,<br>ISO 16968                                                                                                                     | mg/kg dry                              | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | ≤                                                                                                                    | 10                                                                                                                                                                                       |
|                 | <b>Zinc, Zn</b> ,<br>ISO 16968                                                                                                               | mg/kg dry                              | Not applicable                                                                                                                                   | Not applicable                                                                                                                                   | <u>&lt;</u> 1                                                                                                        | 00                                                                                                                                                                                       |
| Informative     | <b>Net calorific value,</b><br><b>Q</b> <sup>e</sup> ,<br>ISO 18125                                                                          | MJ/kg or<br>kWh/kg<br>as received      | Minimum val                                                                                                                                      | ue to be stated                                                                                                                                  | Minimum valu                                                                                                         | e to be stated                                                                                                                                                                           |
| <sup>a</sup> Ex | <sup>a</sup> Excluding class 1.1.1.3 Short rotation coppice, if reason to suspect contamination of land or if planting has been used for the |                                        |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                      |                                                                                                                                                                                          |

#### Table 20 – Specification of graded wood chips (EN ISO 17225-4)

sequestration of chemicals or growing trees have been fertilized by sewage sludge (issued from waste water treatment or chemical process). <sup>b</sup> Excluding classes 1.1.5 Stumps/roots and 1.1.6 Bark

<sup>c</sup> Lowest possible property class to be stated. Certain boilers require minimum moisture content, which should to be stated. Moisture class M10 is for artificially dried wood chips. <sup>d</sup> The bulk density is lower for coniferous than for broadleaf wood, see informative Annex A.

е See Annex D from ISO 17225-1 for calculation of net calorific value as received.





|           | Property class,<br>Analysis method                                        | Units                                                                                          | A1                                                                                                                               | A2                                                                                                                                  | В                                                                                                                                                        |
|-----------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Origin and source,<br>ISO 17225-1                                         |                                                                                                | 1.1.3<br>Stemwood<br>1.2.1<br>Chemically<br>untreated<br>wood residues                                                           | 1.1.1 Whole trees<br>without roots<br>1.1.3 Stemwood<br>1.1.4 Logging<br>residues<br>1.2.1 Chemically<br>untreated wood<br>residues | <ul><li>1.1.1 Whole trees without roots</li><li>1.1.3 Stemwood</li><li>1.1.4 Logging residues</li><li>1.2.1 Chemically untreated wood residues</li></ul> |
|           | Wood species <sup>a</sup>                                                 |                                                                                                | To be stated                                                                                                                     |                                                                                                                                     | To be stated                                                                                                                                             |
| Normative | Diameter, D <sup>b</sup>                                                  | cm                                                                                             | D2 $\leq$ 2         D5       2 < D $\leq$ 5         D15       5 < D $\leq$ 15         D15+       >15 (actual value to be stated) |                                                                                                                                     | D15 $5 < D \le 15$<br>D15+ >15 (actual value to be stated)                                                                                               |
|           | Length, L <sup>c</sup>                                                    | cm                                                                                             | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                             |                                                                                                                                     | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                     |
|           | <b>Moisture, M</b> <sup>d</sup><br>ISO 18134-1,<br>ISO 18134-2            | w-% as received wet basis                                                                      | M20 ≤ 20<br>M25 ≤ 25                                                                                                             |                                                                                                                                     | M20 ≤ 20<br>M25 ≤ 25<br>M35 ≤ 35                                                                                                                         |
|           | Volume or weight                                                          | Volume m <sup>3</sup><br>stacked or loose<br>or weight, kg<br>as received                      | To be stated whi<br>and/or packaged                                                                                              | ich unit is used when<br>d log woods weight.                                                                                        | retailed (m <sup>3</sup> stacked or loose, kg)                                                                                                           |
|           | Energy density, E <sup>e</sup><br>or Net calorific<br>value, Q, ISO 18125 | MJ/m <sup>3</sup> or kWh/m <sup>3</sup><br>stacked or loose<br>MJ/kg or kWh/kg,<br>as received | Recommended t                                                                                                                    | to be stated.                                                                                                                       |                                                                                                                                                          |
|           | Drying                                                                    |                                                                                                | Recommended t<br>ambient air or ar                                                                                               | to be stated, if firewoo<br>tificially by hot air.                                                                                  | d is dried by natural seasoning by                                                                                                                       |
| mativ€    | Moisture, U <sup>d</sup>                                                  | w-% dry basis                                                                                  | U25 ≤ 25<br>U33 ≤ 33                                                                                                             |                                                                                                                                     | U33 ≤ 33<br>U54 ≤ 54                                                                                                                                     |
| Infor     | Decay and mould                                                           | % of pieces                                                                                    | No visible<br>decay                                                                                                              | <u>≤</u> 5                                                                                                                          | If significant amount (more than 10 % of pieces) of decay or mould exists it should be stated.                                                           |
|           | Proportion of split volume                                                | % of pieces                                                                                    | ≥ 90                                                                                                                             | ≥ 50                                                                                                                                | No requirements                                                                                                                                          |
|           | The cut-off<br>surface                                                    |                                                                                                | Even and smooth <sup>f</sup>                                                                                                     | No requirements                                                                                                                     | No requirements                                                                                                                                          |

### Table 21 – Specification of graded firewood (EN ISO 17225-5)

<sup>a</sup> Wood species (e.g. spruce, birch, beech) can be stated by using EN 13556 Round and sawn timber Nomenclature<sup>[8]</sup>. If firewood includes different wood species, the main wood species should be mentioned first.

<sup>b</sup> 85 % of the firewood should be kept in specified diameter property class. For stoves it is recommended to use firewood with a diameter less than 15 cm. D2 and D5 are recommended for cookers and as kindling (ignition wood). In informative Annex B a simple method for measuring of the diameter is specified.

<sup>c</sup> It is allowed to have 15 % firewood shorter than requested length including the limit value.

<sup>d</sup> Moisture content should not be less 12 w-% on wet basis (M) or 13,64 w-% on dry basis (U). Calculation from M to U-basis is shown in informative Annex A.

<sup>e</sup> The energy density (E) may be calculated according to Annex C on the basis of the bulk density (BD) and the net calorific value .

f Use of chainsaw and circular saw will give a smooth and even cut-off surface.





# Table 22 – Specification of pellets produced from herbaceous biomass, fruit biomass, aquatic biomass and blends and mixtures (EN ISO 17225-6)

|             | Property class, Analysis method                                                                                     | units                             | Α                                                                                                             | В                                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|             | <b>Origin and source</b> <sup>a</sup> ,<br>ISO 17225-1 Table 1                                                      |                                   | 2 Herbaceous biomass<br>3 Fruit biomass<br>4 Aquatic biomass<br>5 Blends and mixtures                         | 2 Herbaceous biomass<br>3 Fruit biomass<br>4 Aquatic biomass<br>5 Blends and mixtures                 |
|             | <b>Diameter,</b> <i>D</i> <sup>b</sup> and <b>Length</b> <i>L</i> <sup>c</sup> ,<br>ISO 17829<br>According Figure 1 | mm                                | D06 to D25, $D \pm 1$ ;<br>3,15 < L $\leq$ 40<br>(from D06 to D10)<br>3,15 < L $\leq$ 50<br>(from D12 to D25) | D06 to D25, <i>D</i> ± 1;<br>3,15 < L ≤ 40<br>(from D06 to D10)<br>3,15 < L ≤ 50<br>(from D12 to D25) |
|             | <b>Moisture, M,</b><br>ISO 18134-1, ISO 18134-2                                                                     | w-% as received,<br>wet basis     | M12 ≤ 12                                                                                                      | M15 ≤ 15                                                                                              |
|             | Ash, A, ISO 18122                                                                                                   | w-% dry                           | A6.0 ≤ 6                                                                                                      | A10 ≤ 10                                                                                              |
|             | Mechanical durability, DU,<br>ISO 17831-1                                                                           | w-% as received                   | DU97.5 ≥ 97,5                                                                                                 | DU96.0 ≥ 96,0                                                                                         |
|             | Fines, F <sup>d</sup> , ISO 18846                                                                                   | w-% as received                   | F2.0 ≤ 2,0                                                                                                    | F3.0 ≤ 3,0                                                                                            |
| lative      | Additives <sup>e</sup>                                                                                              | w-%, dry                          | ≤ 5<br>Type and amount to be<br>stated                                                                        | ≤ 5<br>Type and amount to be<br>stated                                                                |
| Norm        | <b>Net calorific value, Q</b> ,<br>ISO 18125                                                                        | MJ/kg or<br>kWh/kg<br>as received | Q14.5 ≥ 14,5 or<br>Q4.0 ≥ 4,0                                                                                 | Q14.5 ≥ 14,5 or<br>Q4.0 ≥ 4,0                                                                         |
|             | Bulk density, BD,<br>ISO 17828                                                                                      | kg/m <sup>3</sup><br>as received  | BD600 ≥ 600                                                                                                   | BD600 ≥ 600                                                                                           |
|             | Nitrogen, N, ISO 16948                                                                                              | w-% dry                           | N1.5 ≤ 1,5                                                                                                    | N2.0 ≤ 2,0                                                                                            |
|             | Sulphur, S, ISO 16994                                                                                               | w-% dry                           | S0.20 ≤ 0,20                                                                                                  | S0.30 ≤ 0,30                                                                                          |
|             | Chlorine, Cl, ISO 16994                                                                                             | w-% dry                           | CI0.10 ≤ 0,10                                                                                                 | Cl0.30 ≤ 0,30                                                                                         |
|             | Arsenic, As, ISO 16968                                                                                              | mg/kg dry                         | ≤ 1                                                                                                           | ≤ 1                                                                                                   |
|             | Cadmium, Cd, ISO 16968                                                                                              | mg/kg dry                         | ≤ 0,5                                                                                                         | ≤ 0,5                                                                                                 |
|             | Chromium, Cr, ISO 16968                                                                                             | mg/kg dry                         | ≤ 50                                                                                                          | ≤ 50                                                                                                  |
|             | Copper, Cu, ISO 16968                                                                                               | mg/kg dry                         | ≤ 20                                                                                                          | ≤ 20                                                                                                  |
|             | Lead, Pb, ISO 16968                                                                                                 | mg/kg dry                         | ≤ 10                                                                                                          | ≤ 10                                                                                                  |
|             | Mercury, Hg, ISO 16968                                                                                              | mg/kg dry                         | ≤ 0,1                                                                                                         | ≤ 0,1                                                                                                 |
|             | Nickel, Ni, ISO 16968                                                                                               | mg/kg dry                         | ≤ 10                                                                                                          | ≤ 10                                                                                                  |
|             | <b>Zinc, Zn</b> , ISO 16968                                                                                         | mg/kg dry                         | ≤ 100                                                                                                         | ≤ 100                                                                                                 |
| Informative | <b>Ash melting behaviour</b> <sup>f</sup> ,<br>CEN/TS15370-1 <sup>[3]</sup>                                         | °C                                | Should be stated                                                                                              | Should be stated                                                                                      |

<sup>a</sup> To be stated the 4-digit classification (Table 1 ISO 17225-1). Blends and mixtures can include also woody biomass. If composition of blend is known, the w-% can be used to specify blends. *Example 1*: 80 w-% 2.1.1.2 Straw, 20 w-% 2.1.2.2 Grasses, straw plant. In the case of mixture, the main component should be stated first. *Example 2*: 2.1.1.2 Straw, 2.1.2.2 Grasses, straw plant.

<sup>b</sup> Selected size (e.g. D06, D08, D10, D12 or D25) of pellets to be stated

<sup>c</sup> Amount of pellets longer than 40 mm can be 1 w-% (from D06 to D10). Maximum length shall be ≤ 45 mm for pellets from D06 to D10. Pellets are longer than 3,15 mm, if they stay on a round hole-sieve of 3,15 mm.

<sup>d</sup> At factory gate in bulk transport (at the time of loading) and in small (up to 20 kg)and large sacks (at time of packing or when delivering to end-user).

<sup>e</sup> Type of additives to aid production, delivery or combustion (e.g. pressing aids, slagging inhibitors or any other additives like starch, corn flour, potato flour, vegetable oil, lignin).

<sup>f</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated.





# Table 23– Specification of pellets produced from cereal straw, miscanthus and reed canary grass (EN ISO 17225-6)

|       | Property class,<br>Analysis method                             | units                              | Cereal Straw<br>pellets                                                  | Miscanthus pellets<br>(Miscanthus<br>Giganteus)                                  | Reed canary grass<br>pellets (Phalaris<br>arundinacea L.)                        |
|-------|----------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|       | Origin and source,<br>ISO 17225-1 Table 1                      |                                    | 2.1.1.2 Straw parts                                                      | 2.1.2.1 Grasses,<br>Whole plant                                                  | 2.1.2.1 Grasses,<br>Whole plant                                                  |
|       | <b>Diameter</b> , $D^{a}$ and <b>length</b> $L$ , <sup>b</sup> | mm                                 | D06 to D25, $D \pm 1$ ;                                                  | D06 to D25, $D \pm 1$ ;                                                          | D06 to D25, $D \pm 1$ ;                                                          |
|       | According Figure 1                                             |                                    | 3,15 < L ≤ 40<br>(from D06 to D10)<br>3,15 < L ≤ 50<br>(from D12 to D25) | $3,15 < L \le 40$<br>(from D06 to D10)<br>$3,15 < L \le 50$<br>(from D12 to D25) | $3,15 < L \le 40$<br>(from D06 to D10)<br>$3,15 < L \le 50$<br>(from D12 to D25) |
|       | <b>Moisture, M</b> ,<br>ISO 18134-1, ISO 18134-2               | w-%<br>as received,<br>wet basis   | M10 <u>&lt;</u> 10                                                       | M10 <u>&lt;</u> 10                                                               | M12 <u>&lt;</u> 12                                                               |
|       | <b>Ash, A<sup>C</sup></b> , ISO 18122                          | w-% dry                            | A6.0 <u>&lt;</u> 6<br>A6.0+ > 6 <sup>d</sup>                             | A4.0 <u>&lt;</u> 4<br>A4.0+ > 4 <sup>d</sup>                                     | A8.0 <u>&lt;</u> 8<br>A8.0 + > 8 <sup>d</sup>                                    |
|       | Mechanical durability, DU,<br>ISO 17831-1                      | w-%<br>as received                 | DU97.5 <u>&gt;</u> 97,5                                                  | DU97.5 <u>&gt;</u> 97,5                                                          | DU96.5 <u>&gt;</u> 96,5                                                          |
|       | Fines, F <sup>d</sup> , ISO 18846                              | w-%<br>as received                 | F1.0 <u>&lt;</u> 1,0                                                     | F1.0 <u>&lt;</u> 1,0                                                             | F1.0 <u>≤</u> 1,0                                                                |
| ative | Additives <sup>f</sup>                                         | w-%, dry                           | Type and amount to be stated                                             | Type and amount to be stated                                                     | Type and amount to be stated                                                     |
| Norm  | <b>Net calorific value, Q</b> ,<br>ISO 18125                   | as received,<br>MJ/kg or<br>kWh/kg | Minimum value to be stated                                               | Minimum value to be stated                                                       | Q14.5 <u>≥</u> 14,5<br>Q4.0 <u>≥</u> 4,0                                         |
|       | Bulk density, BD,<br>ISO 17828                                 | kg/m <sup>3</sup><br>as received   | BD600 <u>&gt;</u> 600                                                    | BD580 <u>&gt;</u> 580                                                            | BD550 <u>&gt;</u> 550                                                            |
|       | Nitrogen, N, ISO 16948                                         | w-% dry                            | N0.7 <u>&lt;</u> 0,7                                                     | N0.5 <u>&lt;</u> 0,5                                                             | N 2.0 <u>&lt;</u> 2,0                                                            |
|       | Sulphur, S, ISO 16994                                          | w-% dry                            | S0.10 <u>&lt;</u> 0,10                                                   | S0.05 <u>&lt;</u> 0,05                                                           | S0.20 <u>&lt;</u> 0,20                                                           |
|       | Chlorine, CI, ISO 16994                                        | w-% dry                            | Cl0.10 <u>&lt;</u> 0,10                                                  | Cl0.08 <u>&lt;</u> 0,08                                                          | Cl0.10 <u>&lt;</u> 0,10                                                          |
|       | Arsenic, As, ISO 16968                                         | mg/kg dry                          | <u>&lt;</u> 1                                                            | <u>&lt;</u> 1                                                                    | <u>&lt;</u> 1                                                                    |
|       | Cadmium, Cd, ISO 16968                                         | mg/kg dry                          | <u>&lt;</u> 0,5                                                          | <u>&lt;</u> 0,5                                                                  | <u>&lt;</u> 0,5                                                                  |
|       | Chromium, Cr, ISO 16968                                        | mg/kg dry                          | <u>&lt;</u> 50                                                           | <u>&lt;</u> 50                                                                   | <u>&lt;</u> 50                                                                   |
|       | Copper, Cu, ISO 16968                                          | mg/kg dry                          | <u>&lt;</u> 20                                                           | <u>&lt;</u> 20                                                                   | <u>&lt;</u> 20                                                                   |
|       | Lead, Pb, ISO 16968                                            | mg/kg dry                          | <u>&lt;</u> 10                                                           | <u>&lt;</u> 10                                                                   | <u>&lt;</u> 10                                                                   |
|       | Mercury, Hg, ISO 16968                                         | mg/kg dry                          | <u>&lt;</u> 0,1                                                          | <u>&lt;</u> 0,1                                                                  | <u>&lt;</u> 0,1                                                                  |
|       | Nickel, Ni, ISO 16968                                          | mg/kg dry                          | <u>&lt;</u> 10                                                           | <u>&lt;</u> 10                                                                   | <u>&lt;</u> 10                                                                   |
|       | Zinc, Zn, ISO 16968                                            | mg/kg dry                          | <u>&lt;</u> 100                                                          | <u>&lt;</u> 100                                                                  | <u>&lt;</u> 100                                                                  |
|       | Informative                                                    | °C                                 |                                                                          |                                                                                  |                                                                                  |
|       | Ash melting behaviour <sup>9</sup> ,<br>CEN/TS 15370-1         |                                    | Should be stated                                                         | Should be stated                                                                 | Should be stated                                                                 |

<sup>a</sup> Selected size (e.g. D06, D08, D10, D12 or D25) of pellets to be stated

<sup>b</sup> Amount of pellets longer than 40 mm can be 1 w-% (for D06 to D10). Maximum length shall be ≤ 45 mm for pellets for D06 to D10. Pellets are longer than 3,15 mm, if they stay on a round hole-sieve of 3,15 mm.

<sup>c</sup> Actual ash property class shall be stated.

<sup>d</sup> Value to be stated.

<sup>e</sup> At factory gate in bulk transport (at the time of loading) and in small (up to 20 kg)and large sacks (at time of packing or when delivering to end-user).

<sup>f</sup> Type of additives to aid production, delivery or combustion (e.g. pressing aids, slagging inhibitors or any other additives like starch, corn flour, potato flour, vegetable oil, lignin).

<sup>9</sup> It is recommended that all characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated.





## Table 24 – Specification of graded non-woody briquettes (EN ISO 17225-7)

|             | Property class, Analysis method                                          | units                                | А                                                                                     | В                                                                                     |
|-------------|--------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|             | <b>Origin and source</b> <sup>a</sup> ,<br>ISO 17225-1 Table 1           |                                      | 2 Herbaceous biomass<br>3 Fruit biomass<br>4 Aquatic biomass<br>5 Blends and mixtures | 2 Herbaceous biomass<br>3 Fruit biomass<br>4 Aquatic biomass<br>5 Blends and mixtures |
|             | Diameter (D) or length ( $L_1$ ), width ( $L_2$ ) and height ( $L_3$ ),  | mm                                   | Diameter,<br>width and length to be stated                                            | Diameter,<br>width and length to be stated                                            |
|             | According Figure in Table 19                                             | Shape                                | Specify shape according to<br>Figure in Table 19<br>e.g. 1 or 2, etc.                 | Specify shape according to<br>Figure in Table 19<br>e.g. 1 or 2, etc.                 |
|             | <b>Moisture, M</b> ,<br>ISO 18134-1, ISO 18134-2                         | w-% as received,<br>wet basis        | M12 ≤ 12                                                                              | M15 ≤ 15                                                                              |
|             | Ash, A, ISO 18122                                                        | w-% dry                              | A6.0 ≤ 6                                                                              | A10.0 ≤ 10                                                                            |
| Normative   | Particle density, DE,<br>ISO 18847                                       | g/cm <sup>3</sup><br>as received     | DE0.9 ≥ 0,9                                                                           | DE0.6 ≥ 0,6                                                                           |
|             | Additives <sup>b</sup>                                                   | w-%, dry                             | ≤ 5<br>Type and amount to be stated                                                   | ≤ 5<br>Type and amount to be stated                                                   |
|             | <b>Net calorific value, Q</b> ,<br>ISO 18125                             | MJ/kg or<br>kWh/kg<br>as received    | Q14.5 ≥ 14,5 or<br>Q4.0 ≥ 4,0                                                         | Q14.5 ≥ 14,5 or<br>Q4.0 ≥ 4,0                                                         |
|             | Nitrogen, N, ISO 16948                                                   | len, N, ISO 16948 w-% dry N1.5 ≤ 1,5 |                                                                                       | N2.0 ≤ 2,0                                                                            |
|             | Sulphur , S, ISO 16994                                                   | w-% dry                              | S0.20 ≤ 0,20                                                                          | S0.30 ≤ 0,30                                                                          |
|             | Chlorine, CI, ISO 16994                                                  | w-% dry                              | CI0.10 ≤ 0,10                                                                         | Cl0.30 ≤ 0,30                                                                         |
|             | Arsenic, As, ISO 16968                                                   | mg/kg dry                            | ≤ 1                                                                                   | ≤ 1                                                                                   |
|             | Cadmium, Cd, ISO 16968                                                   | mg/kg dry                            | ≤ 0,5                                                                                 | ≤ 0,5                                                                                 |
|             | Chromium, Cr, ISO 16968                                                  | mg/kg dry                            | ≤ 50                                                                                  | ≤ 50                                                                                  |
|             | Copper, Cu, ISO 16968                                                    | mg/kg dry                            | ≤ 20                                                                                  | ≤ 20                                                                                  |
|             | Lead, Pb, ISO 16968                                                      | mg/kg dry                            | ≤ 10                                                                                  | ≤ 10                                                                                  |
|             | Mercury, Hg, ISO 16968                                                   | mg/kg dry                            | ≤ 0,1                                                                                 | ≤ 0,1                                                                                 |
|             | Nickel, Ni, ISO 16968                                                    | mg/kg dry                            | ≤ 10                                                                                  | ≤ 10                                                                                  |
|             | <b>Zinc, Zn</b> , ISO 16968                                              | mg/kg dry                            | ≤ 100                                                                                 | ≤ 100                                                                                 |
| Informative | Surface area of briquettes,<br>including the hole surface if<br>existing | cm²/kg                               | To be stated                                                                          | To be stated                                                                          |
| ат          | a be stated the 4 digit elegation (                                      | Table 1 ISO 17005 1) 5               | landa and misturan ann ingluda alan y                                                 | usedy biomass. If composition of                                                      |

<sup>a</sup> To be stated the 4-digit classification (Table 1 ISO 17225-1). Blends and mixtures can include also woody biomass. If composition of blend is known, the w-% can be used to specifying blends. *Example 1*: 80 w-% 2.1.1.2 Straw, 20 w-% 2.1.2.2 Grasses, straw plant. In the case of mixture, the main component should be stated first. *Example 2*: 2.1.1.2 Straw, 2.1.2.2 Grasses, straw plant.

<sup>b</sup> Type of additives to aid production, delivery or combustion (e.g. pressing aids, slagging inhibitors or any other additives like starch, corn flour, potato flour, vegetable oil, lignin).

NOTE The combustion time may also be an important parameter for further characterisation of the combustion behaviour. The combustion time indicates in which time the energy of the briquettes is released. The combustion time depends on both the shape and density of the briquettes as well as the air ratio.





Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe

## S2Biom Project Grant Agreement n°608622

## ANNEX III of D2.1 Instructions on the database of conversion technologies WP2

## 30 April 2015













## **About S2Biom project**

The S2Biom project - Delivery of sustainable supply of non-food biomass to support a "resourceefficient" Bioeconomy in Europe - supports the sustainable delivery of non-food biomass feedstock at local, regional and pan European level through developing strategies, and roadmaps that will be informed by a "computerized and easy to use" toolset (and respective databases) with updated harmonized datasets at local, regional, national and pan European level for EU28, Western Balkans, Moldova, Turkey and Ukraine. Further information about the project and the partners involved are available under <u>www.s2biom.eu</u>.







## About this document

This report corresponds to (number and name of deliverable) of S2Biom. It has been prepared by:

| Due date of deliverable: | M18                                         |
|--------------------------|---------------------------------------------|
| Actual submission date:  | 2014-30-04                                  |
| Start date of project:   | 2013-01-09                                  |
| Duration:                | 36 months                                   |
|                          |                                             |
| Work package             | 2                                           |
| Task                     | 2.3                                         |
| Lead contractor for this | BTG                                         |
| deliverable              |                                             |
| Editor                   | Martijn Vis                                 |
| Authors                  | Martijn Vis, Rik te Raa, Douwe van den Berg |
| Quality reviewer         |                                             |

| Dissemination Level |                                                                                        |   |  |  |
|---------------------|----------------------------------------------------------------------------------------|---|--|--|
| PU                  | Public                                                                                 | Х |  |  |
| PP                  | Restricted to other programme participants (including the Commission Services)         |   |  |  |
| RE                  | Restricted to a group specified by the consortium (including the Commission Services): |   |  |  |
| СО                  | Confidential, only for members of the consortium (including the Commission Services)   |   |  |  |

| Version | Date      | Author(s) | Reason for modification        | Status |
|---------|-----------|-----------|--------------------------------|--------|
| 1.0     | 31/3/2014 | M.W. Vis  | First version                  |        |
| 1.2     | 30/4/2015 | M.W. Vis  | Edited version as part of D2.1 | ОК     |

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 608622.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.



## **Table of contents**

| 1. | Introd | uction                         | 5  |
|----|--------|--------------------------------|----|
| 2. | Practi | calities                       | 6  |
|    | 2.1    | Login                          | 6  |
|    | 2.2    | The database                   | 6  |
|    | 2.3    | Contact persons                | 6  |
| 3. | Prope  | rties to be described          | 7  |
|    | 3.1    | General properties             | 7  |
|    | 3.2    | Technical properties           | 9  |
|    | 3.3    | Biomass input specifications1  | 11 |
|    | 3.4    | Financial/economic properties1 | ٤5 |
| 4. | Gener  | al considerations1             | 16 |

## **List of Figures**

| Figure 1 Structure of WP2 in WP1-4 of S2BIOM | project |
|----------------------------------------------|---------|

## **List of Tables**

| Table 1 Overview of dimensions of the different traded forms | 13 | ; |
|--------------------------------------------------------------|----|---|
|--------------------------------------------------------------|----|---|

4





## 1. Introduction

This document was written within the S2BIOM project for Task 2.1. 'Identification and characterisation of existing and future non-food biomass conversion technologies for energy and bio based products".

In the document *"Identification and characterization of conversion technologies"* an overview of conversion technologies is presented that are potentially relevant for the production of energy and materials in the period up till 2030. Based on this overview, a selection is made of conversion processes that are relevant today, and that are expected to contribute significantly to renewable energy and the biobased economy in 2020 and 2030. The following main classification of conversion technologies has been used:

#### I. Thermal conversion technologies

| 1. | Direct combustion of solid biomass | VTT |
|----|------------------------------------|-----|
| 2. | Gasification technologies          | VTT |
| 3. | Fast pyrolysis                     | BTG |
| 4. | Torrefaction                       | ECN |
| 5. | Syngas platform                    | ECN |
| 6. | Treatment in subcritical water     | BTG |
| 7. | Treatment in supercritical water   | BTG |

#### II . Chemical and biochemical conversion technologies

| 8.  | Anaerobic digestion                       | DLO |
|-----|-------------------------------------------|-----|
| 9.  | Techniques from pulp and paper industry   | VTT |
| 10. | Pretreatment, hydrolysis and fermentation | DLO |

For each conversion technologies a number of chains of processes and applications have been selected for inclusion in the database. The long list of technologies, selected processes and applications and motivation of the selection can be found in the document *"Identification and characterization of conversion technologies"*.

Based on own research and inputs from WP2 partners and in cooperation with WP3 and taking into account the models used elsewhere in the S2BIOM project, BTG has selected a number of relevant technical properties and biomass input specification for inclusion in the database. This instruction document describes the fields that can be found in the database with further explanation where required.

## 2. Practicalities

## 2.1 Login

The database is set up and maintained by DLO and can be found on <u>http://flexwood.felis.uni-freiburg.de:8080/en/web/guest/maintain-conversions</u>. All WP2 partners will receive a login name and password, which give access to the database.

### 2.2 The database

After login, you will find a screen with biomass chains described so far. If not, go to "maintain" and selected "conversions".

For adding a description of a **new** conversion chain, click "add item". Now you can fill in the database. **See chapter 3 for further instruction on the data items.** The second page is reached by clicking "save and proceed".

If you would like to **edit** a conversion chain that was already described, please find the conversion chain in the list and click the edit button at the utmost right column.

If you would like to **delete** a conversion chain, please find the conversion chain in the list and click the edit button at the utmost right column.

Don't edit or delete conversion chains, if you are not the author.

### 2.3 Contact persons

Contact person regarding technicalities of the database (database accessibility, login name, password, etc.): Hugo de Groot, +31 317 481 901, <u>hugo.degroot@wur.nl</u>.

In case of questions about this instruction document or content of the database, please contact Rik te Raa, <u>teraa@btgworld.com</u>, +31 53 486 1187.

In case of other questions on WP2 please contact Martijn Vis, <u>vis@btgworld.com</u>, +31 53 486 1193.



## 3. Properties to be described

For each input (one or preferably more) data sources need to be provided. For existing technologies values based on practical experience will be used. Where appropriate, data ranges and typical values will be required.

## **3.1 General properties**

- Name:
  - Use a unique name (commercial name, brand name, name technology supplier whatever is appropriate)

Beware: this is the only field that cannot be changed later by editing.

- Description of the main category of the technology (drop down list)
  - For instance "combustion", see the titles of each sub paragraph of section 4.1 and 4.2.
- Description of sub-category of the technology (drop down list + option new)
  - F.i. "fixed bed combustion for combined heat and power", see the technologies selected for database.
  - The drop down list is based on earlier discussions with WP2 partners. If the list of sub-categories needs to be extended please contact Rik te Raa.
- Image(s) of the technology (URL to the image)
- Year of first implementation
  - Year of the first pilot/demo introduction of the technology
- Estimated number of systems in operation (number)
- Description of main operating principle of technology (text)
  - o Including brief description of the technology and most common/suitable applications
  - o Three or four lines should be sufficient
- Level of commercial application (text)
  - o Describe the main markets of the technologies and if it is commonly applied.
- Names important pilots-demo's, and EU projects
  - o Relevant reference projects
- Current Technology Readiness level in 2014 (drop down list 1-9)
  - o see the box below for the meaning of each number.

#### **Box 1: Technology Readiness levels TRL**

The TRL scale is a metric for describing the maturity of a technology. The acronym stands for Technology Readiness Level. The scale consists of 9 levels. Each level characterises the progress in the development of a technology, from the idea (level 1) to the full deployment of the product in the marketplace (level 9).

This scale was developed by NASA in the 70s to assess the maturity of a technology prior to integrating this technology into a system. It contained 7 levels at that time. Nowadays, 9 levels compose the scale. These levels are detailed below.

#### Level 1 - Basic Research: basic principles are observed and reported

Lowest level of technology readiness. Scientific research begins to be translated into applied research and development. Examples might include fundamental investigations and paper studies.

#### Level 2 – Applied Research: technology concept and/or application formulated

Once basic principles are observed, practical applications can be formulated. Examples are limited to analytic studies and experimentation.

#### Level 3 – Critical function, proof of concept established

Active research and development is initiated. Laboratory studies aim to validate analytical predictions of separate components of the technology. Examples include components that are not yet integrated or representative.

#### Level 4 – Laboratory testing of prototype component or process

Design, development and lab testing of technological components are performed. Here, basic technological components are integrated to establish that they will work together. This is a relatively "low fidelity" prototype in comparison with the eventual system.

#### Level 5 – Laboratory testing of integrated system

The basic technological components are integrated together with realistic supporting elements to be tested in a simulated environment. This is a "high fidelity" prototype compared to the eventual system.

#### Level 6 - Prototype system verified

The prototype, which is well beyond that of level 5, is tested in a relevant environment. The system or process demonstration is carried out in an operational environment.

#### Level 7 – Integrated pilot system demonstrated

Prototype is near, or at, planned operational system level. The final design is virtually complete. The goal of this stage is to remove engineering and manufacturing risk.

#### Level 8 – System incorporated in commercial design

Technology has been proven to work in its final form under the expected conditions. In most of the cases, this level represents the end of true system development.

#### Level 9 – System ready for full scale deployment

Here, the technology in its final form is ready for commercial deployment.



- Expected developments = expected Technology Readiness Level in 2030 (drop down list 1-9)
- Justification of expected TRL is 2030 (text)
  - Please use arguments and references to relevant literature (energy outlooks etc.).
- References to information sources, section general properties (text).
  - E.g. reference to article, reference to report, web address, personal communication, etc. used in the general properties part.

## **3.2 Technical properties**

- Capacity of outputs (typical values)
  - o Select the relevant outputs e.g. power, heat, products, fuels, that are listed.
    - Power: MW<sub>power</sub>output
    - Heat: MW<sub>heat</sub>output
    - Fuels: Production: m3/hour + LHV of the fuel: GJ/m3
    - Products, chemicals: tonnes/hour
  - If the technology produces outputs that are not listed, <u>please contact Rik te Raa</u>, <u>BTG. As a database manager he can add outputs to the list.</u>
- Conversion efficiencies (2014, 2020 and 2030)
  - o Provide the conversion efficiency for each output.
  - Only typical values for 2020 and 2030, if technical development is expected to cause a change in conversion efficiency.
  - Net energy returns electricity (useable GJ/GJ biomass input)
    - Typical value
    - Min
    - Max
  - Net energy returns useable heat (GJ useable heat/GJ biomass input)
    - Typical value
    - Min
    - Max
  - Net energy returns fuels (fuel GJ/GJ biomass input)
    - Typical value
    - Min
    - Max
  - Net product returns (kg product/kg dry biomass input; possibility to introduce new product type, <u>please contact Rik te Raa (teraa@btgworld.com) if this is needed.</u>)
    - Typical value
    - Min
    - Max
- Data sources to define conversion efficiencies in 2014, 2020 and 2030 (text)





- All conversion efficiencies need to be justified by relevant literature. This is one of the most important inputs for further modelling, so please do this carefully.
- indication: experience based data (yes, no)
  - Experience based data is preferred above theoretical efficiencies.
- External inputs, not generated by the biomass in the conversion process).
  - Auxiliary power, heat, fuels and products like
    - Power (kW) (number)
    - Heat (kW) (number)
    - Natural gas (GJ/hour)
    - Other fuels (GJ/hour) (possibility to make new category)
  - Other input demand like materials, chemicals, enzymes, etc.;
  - There is a possibility to introduce new input types. <u>Please contact Rik te Raa</u> (teraa@btgworld.com) if this is needed.
- Number possible full load hours per year
  - technically possible (hours/year)
- Number of typical full load hours per year
  - E.g. in case of application for residential heating the number of typical full load hours can be much lower than the technical maximum.
- Typical lifetime of equipment (years)
  - o <u>Technical</u> lifetime is required here
- General data sources technical properties (text)
  - List data sources used in the technical properties section.

[save and proceed]



## **3.3 Biomass input specifications**

This section describes information on the minimum requirements of biomass supplied to the site of the conversion unit, coming e.g. from the biomass supplier or pretreatment unit, (before possible further on site pretreatment before conversion).

- Biomass input common for the technology used
  - Selection from drop down list of biomass types described in WP1 (selection of 1-5 biomass types)

N.B. This selection of five common biomass types is indicative. Later, the suitability of the each biomass type for the conversion technology will be evaluated based on the biomass properties of each biomass type by a Matching Tool to be developed in Task 2.3.

- Biomass input that could technically be possible to convert but not commonly applied
  - o drop down list from text, categories WP1 (selection of 0-10 biomass types)

N.B. This selection of 0-10 other biomass types is indicative. Later, the suitability of the each biomass type for the conversion technology will be evaluated based on the biomass properties of each biomass type by a Matching Tool to be developed in Task 2.3.

The full list of biomass types is defined in WP1 and is presented in the Box below.

| Box 2: Biomass types considered in the S2BIOM project |                                                                  |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|
|                                                       | Grasses                                                          |  |  |  |  |
| 1                                                     | Cardoon, Energy Grasses, Annual Crops, Perennial Crops           |  |  |  |  |
| 2                                                     | Sorghum, Energy Grasses, Annual Crops, Perennial Crops           |  |  |  |  |
| 3                                                     | Miscanthus, Energy Grasses, Annual Crops, Perennial Crops        |  |  |  |  |
| 4                                                     | Switchgrass, Energy Grasses, Annual Crops, Perennial Crops       |  |  |  |  |
| 5                                                     | Giant_reed, Energy Grasses, Annual Crops, Perennial Crops        |  |  |  |  |
| 6                                                     | Reed Canary Grass, Energy Grasses, Annual Crops, Perennial Crops |  |  |  |  |
| 7                                                     | Grass, Abandoned grassland                                       |  |  |  |  |
| 8                                                     | Grass, Biomass (roadside Verges)                                 |  |  |  |  |
| 9                                                     | Grass, Landscape care                                            |  |  |  |  |
|                                                       |                                                                  |  |  |  |  |
|                                                       | Agricultural residues                                            |  |  |  |  |
| 10                                                    | Cereals Rice, Straw/stubbles                                     |  |  |  |  |
| 11                                                    | Maize, Straw/stubbles                                            |  |  |  |  |
| 12                                                    | Rape, Straw/stubbles                                             |  |  |  |  |
| 13                                                    | Sugarbeet, Straw/stubbles                                        |  |  |  |  |
| 14                                                    | Sunflower, Straw/stubbles                                        |  |  |  |  |
| 15                                                    | Cotton_acorn, Cotton Industry by-products                        |  |  |  |  |
| 16                                                    | Others, Cotton Industry by-products                              |  |  |  |  |
| 17                                                    | Nuts, Woody prunnings/orchard residues                           |  |  |  |  |
| 18                                                    | Olive-stones, Sec. Residues (food/fruit processing Industries)   |  |  |  |  |



19 Others, Sec. Residues (food/fruit processing Industries)

#### Woody biomass

#### Woody energy crops

#### 20 Willow, SRC on ag. land

- 21 Poplar, SRC on ag. land
- 22 Other (incl. Eucalyptus), SRC on ag. Land

#### Forest wood

- 23 Broadleaf, Stem/Crown Biomass (early thinnings)
- 24 Broadleaf, Stemwood (thinnings & final fellings)
- 25 Broadleaf, Logging residues (thinnings & final fellings)
- 26 Broadleaf, Stumps (thinnings & final fellings)
- 27 Conifer, Stem/Crown Biomass (early thinnings)
- 28 Conifer, Stemwood (thinnings & final fellings)
- 29 Conifer, Logging residues (thinnings & final fellings)
- 30 Conifer, Stumps (thinnings & final fellings)

#### Woody Prunings/orchard residues

- 31 Citrus, Woody prunnings/orchard residues
- 32 Fruit trees, Woody prunnings/orchard residues
- 33 Olives, Woody prunnings/orchard residues
- 34 Vineyards, Woody prunnings/orchard residues Wood outside forests
- 35 Wood, Biomass (roadside Verges)
- 36 Wood, Landscape care
- 37 Paper cardboard, Other Biomass (trees/hedges outside forests)
- 38 Other, Other Biomass (trees/hedges outside forests)

#### Secondary wood residues

- 39 Chips, Sec. Residues (Wood-products Industries)
- 40 Sawdust, Sec. Residues (Wood-products Industries)
- 41 Other SawMill Byproducts, Sec. Residues (Wood-products Industries)
- 42 Veneer cores, Sec. Residues (Wood-products Industries)
- 43 Other residues, Sec. Residues (Wood-products Industries)
- 44 Black liquor, Sec. Residues (Pulp/Paper Industries)
- 45 Semi-finished, Sec. Residues (wood-based production)
- 46 Finished, Sec. Residues (wood-based production)

#### Tertiary wood residues

- 47 A\_quality, Construction and demolition wood
- 48 B\_quality, Construction and demolition wood
- 49 C\_quality, Construction and demolition wood
- 50 Organic fraction, Biodegradable municipal waste
- 51 Post consumer wood, Woody waste



- Traded form (drop down list)
  - E.g. chips, pellets, grassy material etc. (See p 11, Table 2 of document VTT)
- Dimensions
  - The dimensions depend on the traded form, and will be described according to ISO standards. IN the table below the meaning of the dimensions is further explained.
  - For some traded forms information on the fine fraction is required.

#### Table 1 Overview of dimensions of the different traded forms

| Traded fo                      | d form Dimensions (in mm)                |                                          | Fine fraction               |                       |                                |  |
|--------------------------------|------------------------------------------|------------------------------------------|-----------------------------|-----------------------|--------------------------------|--|
| whole tr                       | whole tree Length x diameter             |                                          |                             |                       |                                |  |
| stemwoo                        | od/roundwood                             | Length x diameter                        |                             |                       |                                |  |
| log wood                       | l, firewood                              | Length x diameter                        |                             |                       |                                |  |
| bundle (e                      | e.g. logging residue                     | length x diameter                        |                             |                       |                                |  |
| bundles)                       |                                          |                                          |                             |                       |                                |  |
| wood chi                       | ips                                      | P16S - P300 (see belo                    | w)                          |                       | F05-F30+ (see                  |  |
| _                              |                                          |                                          |                             |                       | below)                         |  |
| Dimensi                        | ons (mm) ISO 17827-1                     |                                          | 1                           | r                     |                                |  |
| Main frac                      | tion <sup>b</sup>                        | Coarse fraction, w-%                     | Max. length of particles °, | Max. cro              | ss sectional area of           |  |
| (minimum                       | 1 60 w-%), mm                            | (length of particle, mm)                 | mm                          | the coars             | se fraction °, cm <sup>2</sup> |  |
| P165                           | $3,15 \text{ mm} < P \le 16 \text{ mm}$  | $\leq 6\% > 31,5$ mm                     | ≤ 45 mm<br>  ≤ 150 mm       | $\leq 2 \text{ cm}^2$ |                                |  |
| P 10                           | $3, 15 \text{ mm} < P \le 10 \text{ mm}$ | $\leq 0.\% > 31,3$ mm                    | $\leq 150 \text{ mm}$       | < 1 om2               |                                |  |
| P31                            | 3,15 mm < P < $31.5$ mm                  | $\leq 0.\% > 45 \text{ mm}$              | $\leq 200 \text{ mm}$       | 24 00                 |                                |  |
| P45S                           | 3,15  mm < P < 45  mm                    | $\leq 10\% > 63 \text{ mm}$              | < 200 mm                    | $< 6 \text{ cm}^2$    |                                |  |
| P45                            | 3.15  mm < P < 45  mm                    | < 10 % > 63 mm                           | < 350 mm                    | _ 0 0111              |                                |  |
| P63                            | 3.15 mm < P < 63 mm                      | < 10 % > 100 mm                          | < 350 mm                    |                       |                                |  |
| P100 3.15 mm < P < 100 mm      |                                          | _<br>< 10 % > 150mm                      | _<br>≤ 350 mm               |                       |                                |  |
| P200 3.15 mm < P < 200 mm      |                                          | _<br>< 10 % > 250mm                      | ≤ 400 mm                    |                       |                                |  |
| P300 3,15 mm < P ≤ 300 mm      |                                          | to be specified                          | to be specified             |                       |                                |  |
| Fine frac                      | tion, F (< 3,15 mm w-%), I               | SO 17827-1                               | <b>L</b>                    | L                     |                                |  |
| F05                            | <u>≤</u> 5 %                             |                                          |                             |                       |                                |  |
| F10                            | <u>&lt;</u> 10 %                         |                                          |                             |                       |                                |  |
| F15                            | <u>≤ 15 %</u>                            |                                          |                             |                       |                                |  |
| F20                            | $\leq 20\%$                              |                                          |                             |                       |                                |  |
| F20                            | $\leq 20\%$                              |                                          |                             |                       |                                |  |
| F30+                           | > 30 (maximum value to b                 | e stated)                                |                             |                       |                                |  |
| briquette                      | 25                                       | Length x diameter                        |                             |                       |                                |  |
| pellets                        |                                          | D06-D25 (see below)                      |                             |                       | F1.0 - F6.0+ (see              |  |
|                                |                                          |                                          | below )                     |                       |                                |  |
| Dimensions (mm) ISO 17829      |                                          |                                          |                             |                       |                                |  |
| Diameter (D) and Length (L) ~  |                                          |                                          |                             |                       |                                |  |
| D06 6 mm ± 1,0 mm and 3,15     |                                          | 5 mm < L ≤ 40 mm                         | $\mathbf{p}^{\uparrow}()$   | )                     |                                |  |
| DUS [8 mm ± 1,0 mm and 3,15    |                                          | $5 \text{ mm} < L \le 40 \text{ mm}$ $D$ |                             |                       |                                |  |
| D10 10 mm $\pm$ 1,0 mm and 3,1 |                                          | $15 \text{ mm} \le L \le 40 \text{ mm}$  | L = 40 mm                   |                       |                                |  |
| D25                            | 25 mm ± 1,0 mm, and 1                    | 0 mm < L ≤ 50 mm                         | Figure 3 — Dimensions (mm)  |                       |                                |  |





| Amount                          | of fines, F (w-%, < 3,15 mn            | n) after production when | loaded   | l or packed, ISO 1  | 8846               |                     |
|---------------------------------|----------------------------------------|--------------------------|----------|---------------------|--------------------|---------------------|
| F1.0                            | ≤ 1,0 %                                | ≤ 1.0 %                  |          |                     |                    |                     |
| F2.0                            | ≤ 2,0 %                                | ≤ 2,0 %                  |          |                     |                    |                     |
| F3.0                            | ≤ 3,0 %                                |                          |          |                     |                    |                     |
| F4.0                            | ≤ 4,0 %                                |                          |          |                     |                    |                     |
| F5.0                            | ≤ 5,0 %                                |                          |          |                     |                    |                     |
| F6.0+                           | ≤ 6,0 %<br>> 6,0 % (maximum valu       | e to be stated)          |          |                     |                    |                     |
| shavings                        |                                        | not applicable           |          |                     |                    |                     |
| sawdust                         |                                        | not applicable           |          |                     |                    |                     |
| bark                            |                                        | P16-P200 (see below      | )        |                     |                    |                     |
| Dimensio                        | ons (mm) ISO 17827-1                   |                          |          |                     |                    |                     |
|                                 | Nominal top size, mm <sup>a</sup>      |                          | Coars    | e fraction, max. le | ngth of a p        | article, mm < 5 w-% |
| P16                             | P ≤ 16 mm                              |                          | > 45 r   | nm, all < 100 mm    |                    |                     |
| P45                             | P ≤ 45 mm                              |                          | > 63 r   | nm                  |                    |                     |
| P63                             | P ≤ 63 mm                              |                          | > 100 mm |                     |                    |                     |
| P100                            | P ≤ 100 mm                             | > 150 mm                 |          |                     |                    |                     |
| P200                            | P ≤ 200 mm                             | > 350 mm                 |          |                     |                    |                     |
| chopped                         | straw or energy grass                  | Length                   |          |                     |                    |                     |
| round ba                        | les                                    | length x diameter        |          |                     |                    |                     |
| square ba                       | ales                                   | Length x width x height  |          |                     |                    |                     |
| fruit seed                      | ls, olive residues                     | D03-D10+ (see below)     |          |                     | F1.0-F1.0+ (see    |                     |
|                                 |                                        |                          |          |                     |                    | below )             |
| Dimensi                         | <b>ons</b> (mm) ISO 17827-1, I         | SO 17827-1, ISO 1782     | 27-2     | Amount of fines,    | <b>F</b> (w-‰, < 1 | mm) ISO 17827-1     |
| Diameter                        | ( <i>D</i> ) (5 w-% may have dia       | ameter over the class)   |          | $F1.0 \le 1.0$      | 6                  |                     |
| D 03                            | 1 mm $\le D \le$ 3,15 mm               |                          |          | F1.0+ [>1,0+        | 0                  |                     |
| D 05                            | $1 \text{ mm} \le D \le 5 \text{ mm}$  |                          |          |                     |                    |                     |
| D 10                            | $1 \text{ mm} \le D \le 10 \text{ mm}$ |                          |          |                     |                    |                     |
| D 10+ D > 10 mm (maximum v      |                                        | alue to be stated)       |          |                     |                    |                     |
| Other (fo                       | r example examples of                  | not applicable           |          |                     |                    |                     |
| other are black liquor, BMW, PO |                                        |                          |          |                     |                    |                     |
| etc.)                           |                                        |                          |          |                     |                    |                     |

- Typical moisture content (% wet basis)
  - o Will be used for the mass/energy balance
- Maximum moisture content (% wet basis)
  - o Maximum moisture content that the technology can handle
- Minimum bulk density (kg/m<sup>3</sup>, wet basis)
- Maximum ash content (weight %, dry basis)
- Minimal ash melting point (= initial deformation temperature) (°C)
- Volatile matter (VM%, only for thermally trated material, torrefied or steam exploded)
- Maximum allowable content of
  - Nitrogen (N) (wt%, dry basis)
  - Sulphur, S (wt%, dry basis)





• Chlorine (Cl) (wt%, dry basis)

### **Optional attributes**

Please fill in the following optional biomass input requirement (min and max values), except if it the requirement has no meaning for the technology considered.

- Net calorific value (MJ/kg) (number)
- Gross calorific value (MJ/kg) (number)
- Cellulose content (g/kg dry matter) (number)
- Hemicellulose content (g/kg dry matter) (number)
- Lignin content (g/kg dry matter) (number)
- Crude fibre content (g/kg dry matter)
- Starch content (g/kg dry matter)
- Sugar content (g/kg dry matter)
- Fat content (g/kg dry matter)
- Protein content (g/kg dry matter)
- Acetyl group content (g/kg dry matter)

### **3.4 Financial/economic properties**

Financial properties will be based on the typical values as described in the section on technical properties. The financial properties will be average values for the EU28, collection of country specific financial data (like labour costs/FTE) is outside the scope of WP2. Biomass costs will be provided in WP1.

- Investment costs (2014, 2020 and 2030, in Euro)
  - Investment of complete installation including equipment, engineering, building, excluding land (Euro)
  - Please ensure that the investment costs meet with the output capacities that have been indicated under technical properties.

N.B. This value can easily be converted to Euro/kW, or Euro/kg product, whenever needed for further modelling.

- Labour requirements for typical installation (FTE for typical installation)
  - Operators (primary education technician) (FTE)
  - o Staff and engineering (B.Sc, M.Sc, dr. level) (FTE)

Can be recalculated to hours/tonne input

Wages differ much between regions, this data will not be collected here.



## 4. General considerations

In the selection and description of conversion technologies the following general considerations should be taken into account.

- The S2BIOM project focusses on lignocellulosic conversion technologies. Therefore, the classification should be relevant for this category of biomass. For instance technologies using sugar, starch or oil crops are not considered.
- The DOW makes a distinction between "existing" and "future" conversion technologies. This distinction will be replaced by an indication of the Technology Readiness Levels (TRL) to describe the state of the technology. The EC uses TRL in its Horizon 2020 programme. See Annex A. TRL 7-8 can be regarded as "existing"; TRL 1-6 as "future".
- The technology descriptions consider when appropriate changes in time for conversion efficiency and investment costs for 2020 and 2030. This is especially relevant for the future conversion technologies. For other data items a single value will be provided. Uncertainty and variations within one technology are at present day already large, which makes estimation of future variations not useful.
- Conversion technologies will be described that produce heat, power, heat & power, fuels, chemicals and products. In the technology description, all outputs will be indicated and described.
- A number of conversion technologies will be divided into sub-categories (especially combustion, gasification, anaerobic digestion) related to their technical properties, biomass input and capacity range.
- The distinction between thermochemical and biochemical technologies in the Task 2.1 description is further worked out into a more extended list.
- The focus will be on conversion technologies that can be applied in Europe and meet European environmental standards and requirements of BAT.
- For the main pathways (that are considered in the modelling in other WPs) cost data will be gathered and calculated and estimated both on specific investment costs as well as operation and maintenance costs.
- Inputs that are relevant for the greenhouse gas performance (e.g. need of electricity, natural gas, chemicals) will be described in the mass and energy balance. Complete calculation of GHG performance or GHG factors are case specific and will not be described. Emissions for construction of the conversion technologies will not be described in WP2.
- Carbonization is not included in the list of technologies. In Europe charcoal is mainly used for barbeque, an application that provides heat & smoke but does not add to the renewable energy targets of the EU.
- Avoid long descriptions of technologies, refer to relevant literature and actual data from running plants/demo's/projects.
- Selection of the most relevant conversion pathways is an important part of the work.
- The selection of technologies will be matched with requirements from other WPs in advance.
   WP2 will have limited possibilities to deliver tailor made datasets during the course of the project.
  - WP1: technologies should cover the biomass sources assessed in WP1. (BTG participates in WP1)

- WP3: close cooperation with WP3 logistics (Bert Annevelink, DLO)
- The database structure for conversion technologies will be developed in close cooperation with WP 4. (Contact person: Berien Elbersen, DLO)
- The RESolve model in WP7 requires information on several types of combustion, and wishes to expand to biobased options. Contact person: Joost van Stralen, ECN.
- The BeWhere Model and ME4 model will use data on biomass conversion developed in WP2. Information can be provided through WP4 (Contact person: Igor Staritsky)
- WP5: mass and energy balances as input for environmental assessment (IINAS).



Figure 1 Structure of WP2 in WP1-4 of S2BIOM project