

#### Greece

# Roadmap for lignocellulosic biomass and relevant policies for a bio-based economy in 2030

Calliope Panoutsou, Asha Singh, Manolis Karampinis

c.panoutsou@imperial.ac.uk; karampinis@certh.gr







## What types of lignocellulosic biomass are included in the analysis?

Lignocellulosic biomass in this analysis includes:

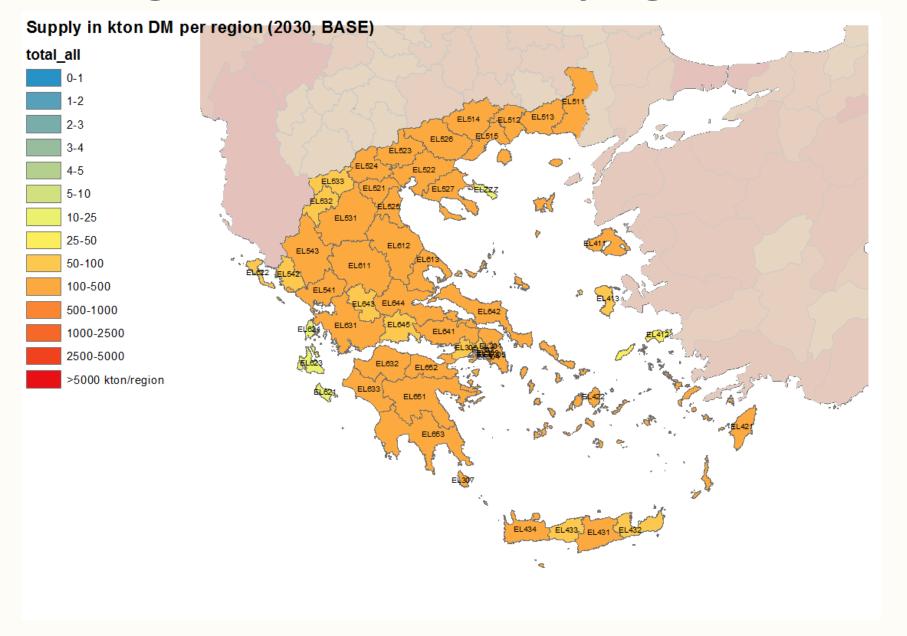
- Forest biomass from primary forestry productions (fellings), primary field residues and secondary forest industry residues;
- Agricultural biomass from primary field activities;
- Biowastes and post consumer wood;
- Dedicated perennial crops.

#### **Context**

The roadmap provides scientific evidence for policy, industry and regional stakeholders for the following issues:

- domestic, sustainable lignocellulosic biomass feedstock potentials at national/regional/local levels;
- resource and energy efficient value chains which are expected to be implemented at scale by 2030;
- Sustainability Risks;
- Key indicators per value chain;
- Policies that can facilitate uptake of indigenous lignocellulosic biomass;
- Recommended roadmap actions based on current good practices.

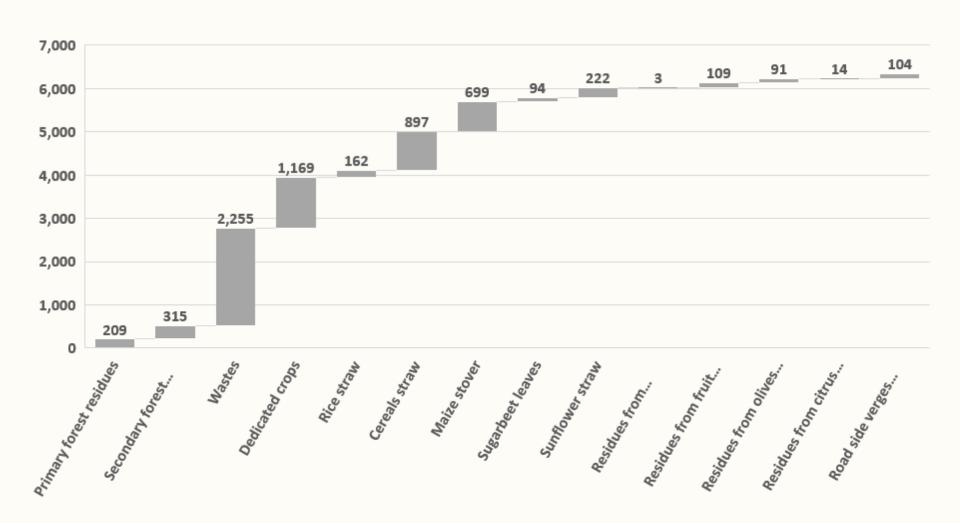
#### Key questions, addressed by S2Biom


- Where is biomass found?
- What is estimated sustainable potential by 2030?
- What are the sustainable potentials by biomass type and where can they be found?
- How do feedstocks perform in terms of sustainability risks?
- Which value chains have high resource and energy efficiency?
- What is the national policy landscape?
- What future policy interventions can be considered based on good practice?

#### Where is biomass found?

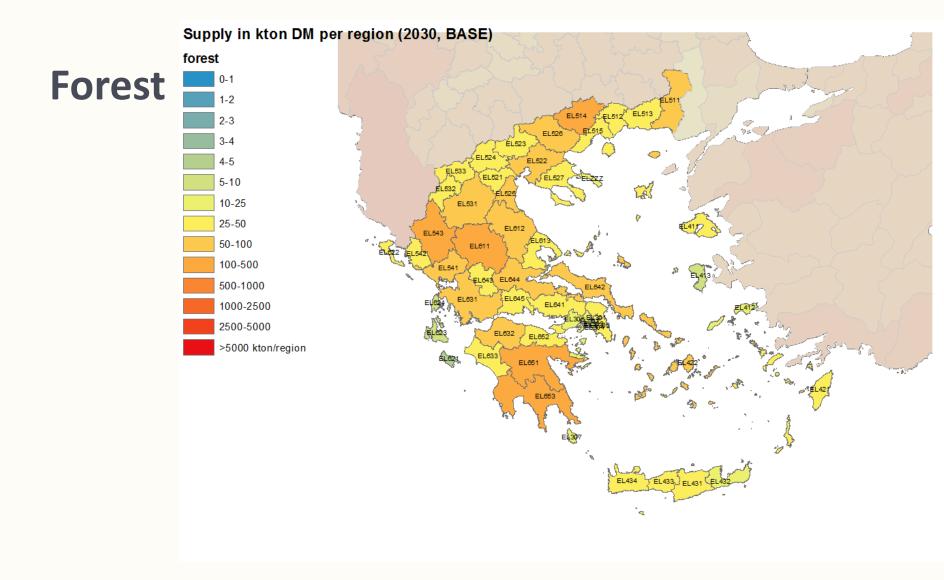
The following slide presents a map with total sustainable\*
 occurrence of lignocellulosic biomass by region, measured in
 '000 dry tonnes per year

<sup>\*</sup> The estimated potentials include sustainability criteria as required by the Renewable Energy Directive.


#### Total lignocellulosic biomass by region

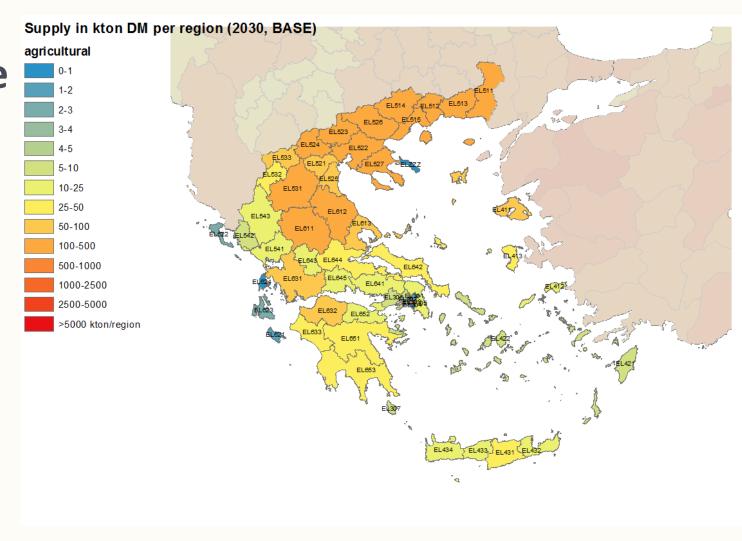


#### What is the availability per biomass type?


- Sustainable potential from residues, dedicated crops,
   biowastes and post consumer wood totals 6.24 m dry tonnes / year.
- Primary forestry production accounts for an additional 1.93 m dry tonnes / year.
- The following slide presents a graph of potential available lignocellulosic biomass by source, excluding primary forestry production.

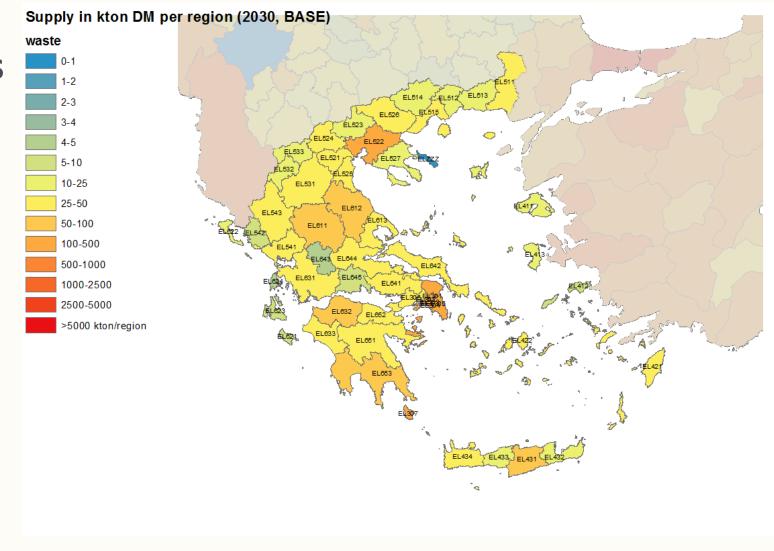
## Lignocellulosic biomass availability by source by 2030 ('000 dry tonnes)




### What are the sustainable potentials by biomass type and where can they be found?

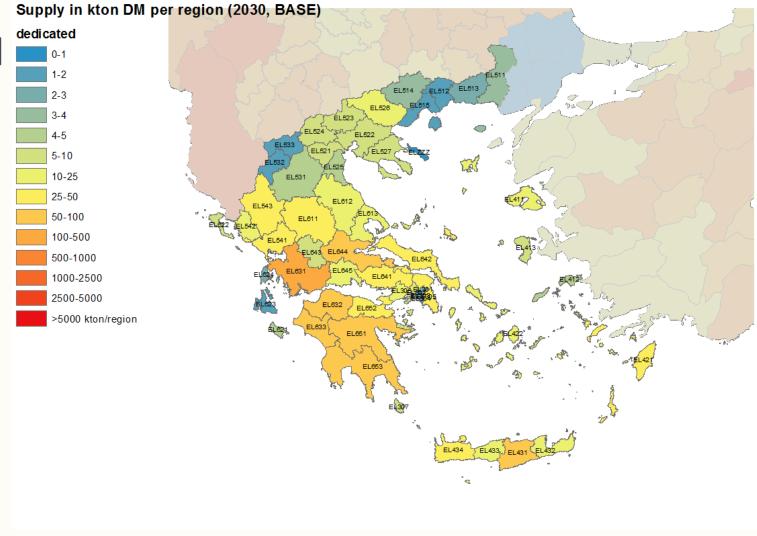
- The following slides present maps of estimated sustainable potential lignocellulosic biomass by region and by main source, namely:
  - Forest (primary forestry production, field residues and secondary forest residues)
  - Agriculture (primary field residues and tree prunings)
  - Biowastes and post consumer wood
  - Dedicated perennial crops




Annual sustainable potential up to 2.45m dry tonnes

### Agriculture




Annual sustainable potential up to 2.4m tonnes

#### Biowastes and post consumer wood



Annual sustainable potential up to 2.26 m tonnes





Annual sustainable potential up to 1.17m tonnes

## How do feedstocks perform in terms of sustainability risks?

| Feedstock                                        |                                | Sustainability risks (high- red; moderate- yellow; low- green) |                                           |                                     |                                                |  |
|--------------------------------------------------|--------------------------------|----------------------------------------------------------------|-------------------------------------------|-------------------------------------|------------------------------------------------|--|
|                                                  |                                | Land use (iLUC risk)                                           | Biodiversity                              | Soil & Carbon stock                 | Water                                          |  |
|                                                  | Stemwood from thinnings &      |                                                                |                                           |                                     |                                                |  |
| Primary forestry productio                       | n final fellings               | 1                                                              |                                           |                                     |                                                |  |
|                                                  | Stem and crown biomass from    |                                                                | Loss of dead wood and stumps may          | Increased risk of soil erosion;     |                                                |  |
| Primary forestry productio                       | nearly thinnings               | 1                                                              | negatively influence species diversity    | risk to loose soil organic carbon;  |                                                |  |
|                                                  | Logging residues from final    |                                                                | and soil fauna. Contrary to this, leaving | risk to loose nutrients and risk of | f                                              |  |
| Primary forestry residues                        | fellings                       | 1                                                              | them all on the ground may result in      | reduced soil fertility and soil     | No effect on the quantity; If no removal lea   |  |
|                                                  |                                |                                                                | increased fertilisation (N and wood ash)  | structure when overharvesting       | to increased fertilisation the leaching on N t |  |
| Primary forestry residues                        | Stumps from final fellings     | None                                                           | and negative impacts on vegetation        | forest residues                     | water may increase.                            |  |
| Secondary residues from                          |                                |                                                                |                                           |                                     |                                                |  |
| wood industries                                  | Saw mill residues              | 1                                                              |                                           | There are debates that using the    |                                                |  |
|                                                  |                                |                                                                |                                           | wood in panel boards, creates a     |                                                |  |
| Secondary residues from                          | Other wood processing          |                                                                |                                           | carbon stock in comparison to       |                                                |  |
| wood industries                                  | industry residues              | None                                                           | None                                      | combustion of the wood              | None                                           |  |
|                                                  |                                |                                                                |                                           | Moderate risk to loose soil         |                                                |  |
| Agricultural residues                            | Straw/stubbles                 |                                                                |                                           | organic carbon when                 |                                                |  |
| Agriculturar residues                            | Straw/stubbles                 | †                                                              |                                           | overharvesting crop residues;       |                                                |  |
|                                                  |                                |                                                                | Biodiversity loss when harvesting too     | risk to loose nutrients when        |                                                |  |
|                                                  | Woody prunning & orchards      |                                                                | many crop residues. This may also have    | overharvesting                      |                                                |  |
| Agricultural residues                            | residues                       | None                                                           | adverse effect on soil biodiversity       | overnarvesting                      | None                                           |  |
| Secondary residues of                            | By-products and residues from  |                                                                |                                           |                                     |                                                |  |
| industry utilising                               | food and fruit processing      |                                                                |                                           |                                     |                                                |  |
| agricultural products                            | industry                       | None                                                           | None                                      | None                                | None                                           |  |
|                                                  |                                |                                                                |                                           | Positive in regions                 |                                                |  |
|                                                  |                                |                                                                |                                           | where it avoids                     |                                                |  |
|                                                  |                                |                                                                |                                           | landfill; Digested                  |                                                |  |
|                                                  |                                |                                                                |                                           | organic waste is a                  |                                                |  |
|                                                  |                                |                                                                | Positive in regions                       | source of soil                      |                                                |  |
| Biodegradable municipal                          |                                |                                                                | where it avoids                           | improving                           | Lower risk of water pollution in regions       |  |
| waste                                            | Biodegradable waste            | None                                                           | landfill                                  | material.                           | where it avoids landfill                       |  |
|                                                  | Hazardous post consumer        |                                                                |                                           |                                     |                                                |  |
| Post consumer wood                               | wood                           |                                                                | Positive in regions                       | Positive in regions                 |                                                |  |
|                                                  | Non hazardous post consumer    |                                                                | where it avoids                           | where it avoids                     | Lower risk of water pollution in regions       |  |
| Post consumer wood                               | wood                           | None                                                           | landfill                                  | landfill                            | where it avoids landfill                       |  |
|                                                  |                                |                                                                |                                           | Potential use of                    |                                                |  |
|                                                  |                                |                                                                | Can provide winter shelter;               | marginal lands,                     | In arid circumstances ground water             |  |
|                                                  |                                |                                                                | birds nesting inside plants;              | which can increase soil             | abstraction and depletion possible             |  |
|                                                  |                                | Higher land productivity                                       | may, however, destroy sensitive           | quality and soil carbon stock;      | because of deep roots; Some use of fertilise   |  |
|                                                  |                                | when marginal lands                                            | habitats (e.g. Steppic habitats,          | Can damage soil                     | / pesticides which can                         |  |
|                                                  |                                | used; in case of agricultural                                  | High Nature Value farmland,               | structure (e.g. Harvesting, root    | be leached to ground water and pollute         |  |
| Daniel de la | Miscanthus, switchgrass, giant |                                                                | biodiversity rich grasslands) when        | removal after 20                    | habitats, but effect is                        |  |
| Perennial lignocellulosic                        |                                |                                                                |                                           |                                     |                                                |  |

## How do feedstocks perform in terms of sustainability risks?

| Feedstock             |                      | Sustainability risks (high- red; moderate- yellow; low- green) |              |                     |       |  |  |
|-----------------------|----------------------|----------------------------------------------------------------|--------------|---------------------|-------|--|--|
|                       |                      | Land use (iLUC risk)                                           | Biodiversity | Soil & Carbon stock | Water |  |  |
|                       | Stemwood from        |                                                                |              |                     |       |  |  |
| Primary forestry      | thinnings & final    |                                                                |              |                     |       |  |  |
| production            | fellings             |                                                                |              |                     |       |  |  |
|                       | Stem and crown       |                                                                |              |                     |       |  |  |
| Primary forestry      | biomass from early   |                                                                |              |                     |       |  |  |
| production            | thinnings            |                                                                |              |                     |       |  |  |
| Primary forestry      | Logging residues     |                                                                |              |                     |       |  |  |
| residues              | from final fellings  |                                                                |              |                     |       |  |  |
| Primary forestry      | Stumps from final    |                                                                |              |                     |       |  |  |
| residues              | fellings             |                                                                |              |                     |       |  |  |
| Secondary residues    |                      |                                                                |              |                     |       |  |  |
| from wood industries  | Saw mill residues    |                                                                |              |                     |       |  |  |
|                       | Other wood           |                                                                |              |                     |       |  |  |
| Secondary residues    | processing industry  |                                                                |              |                     |       |  |  |
| from wood industries  | residues             |                                                                |              |                     |       |  |  |
| Agricultural residues | Straw/stubbles       |                                                                |              |                     |       |  |  |
|                       | Woody prunning &     |                                                                |              |                     |       |  |  |
| Agricultural residues | orchards residues    |                                                                |              |                     |       |  |  |
|                       | By-products and      |                                                                |              |                     |       |  |  |
| Secondary residues    | residues from food   |                                                                |              |                     |       |  |  |
| of industry utilising | and fruit processing |                                                                |              |                     |       |  |  |
| agricultural products | industry             |                                                                |              |                     |       |  |  |
| Biodegradable         |                      |                                                                |              |                     |       |  |  |
| municipal waste       | Biodegradable waste  |                                                                |              |                     |       |  |  |
|                       | Hazardous post       |                                                                |              |                     |       |  |  |
| Post consumer wood    | consumer wood        |                                                                |              |                     |       |  |  |
|                       | Non hazardous post   |                                                                |              |                     |       |  |  |
| Post consumer wood    | consumer wood        |                                                                |              |                     |       |  |  |
|                       | Miscanthus,          |                                                                |              |                     |       |  |  |
| Perennial             | switchgrass, giant   |                                                                |              |                     |       |  |  |
| lignocellulosic crops | reed, willow, poplar |                                                                |              |                     |       |  |  |

## Which value chains have high resource and energy efficiency?

- The following show value chains with relatively high efficiency in the following aspects:
  - Energy efficiency
  - Greenhouse gas emissions
  - Air quality
  - Technological maturity

### Value chains: forest and agriculture

|          | Energy efficiency                                                              | Greenhouse gases                                                                         | Air quality                                                      | Technological maturity            |  |  |  |
|----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--|--|--|
|          | Combustion at small scale including households                                 |                                                                                          |                                                                  |                                   |  |  |  |
| Strength | High conversion efficiency with modern technology                              | Low fossil input in the value chain                                                      |                                                                  | Fully commercial, long experience |  |  |  |
| Weakness | Older stoves have low conversion efficiency. Heat not always efficiently used. | -                                                                                        | High emissions from older wood stoves.                           | -                                 |  |  |  |
|          | Combustion at small-medium scale including buildings                           |                                                                                          |                                                                  |                                   |  |  |  |
| Strength | High conversion efficiency                                                     | Low fossil input in the chain                                                            | -                                                                | Fully commercial, long experience |  |  |  |
| Weakness | -                                                                              | -                                                                                        | Emissions better than smaller scale but higher than natural gas. | -                                 |  |  |  |
|          | Combustion at medium scale, heat led                                           |                                                                                          |                                                                  |                                   |  |  |  |
| Strength | High conversion efficiency                                                     | Low input of fossil fuels; high<br>GHG savings especially for<br>Combined Heat and Power | Better control options for emissions                             | Fully commercial                  |  |  |  |
| Weakness | -                                                                              | -                                                                                        | Higher emissions than natural gas combustion.                    | -                                 |  |  |  |
|          | Biochemical - lignocell. hydrolysis and fermentation                           |                                                                                          |                                                                  |                                   |  |  |  |
| Strength | -                                                                              | High GHG savings in case of process integration and limited fossil input.                | Ethanol has low emissions as transport fuel.                     | -                                 |  |  |  |
| Weakness | Around 50% conversion efficiency                                               | _                                                                                        |                                                                  | Pre-commercial phase              |  |  |  |

### Value chains: wastes

|          | Energy efficiency                                                                                         | Greenhouse gases                                                                                                          | Air quality                                                                                              | Technological maturity |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
|          | Waste incineration and energy recovery                                                                    |                                                                                                                           |                                                                                                          |                        |  |  |  |
| Strength | Adding energy recovery to waste management improves its pathway; high efficiency if CHP                   | High GHG benefit, particularly compared to landfill (avoided methane emissions); energy recovery substitutes fossil fuels | If landfill is avoided, lower air emissions.                                                             | Fully commercial       |  |  |  |
| Weakness | Relatively low net energy output;<br>auxiliary fuel may be required<br>due to low calorific value of fuel | _                                                                                                                         | Issues in terms of emissions of waste incineration. Emission control is circa one third of project cost. | _                      |  |  |  |
|          | Combustion at medium scale, heat driven)                                                                  |                                                                                                                           |                                                                                                          |                        |  |  |  |
| Strength | >85% conversion efficiency in case of heat only; 65-85% efficiency for CHP installations.                 | Low input of fossil fuels;<br>especially in case of CHP GHG<br>savings can be high                                        | Better control options for PM emissions compared to small scale installations.                           | Fully commercial       |  |  |  |
| Weakness | -                                                                                                         | -                                                                                                                         | Still higher PM emissions than natural gas combustion.                                                   | -                      |  |  |  |
|          | Gasification & CHP at medium scale - heat driven                                                          |                                                                                                                           |                                                                                                          |                        |  |  |  |
| Strength | Up to 80% conversion efficiency, depending on heat only or CHP installations.                             | Low/no input of fossil fuels;<br>especially in case of CHP GHG<br>savings can be high                                     | Low emissions of gas engine or turbine                                                                   | (Early) commercial     |  |  |  |

### Key indicators per value chain

|                      |                            |                                                                      |            | Non-renewable energy requirement (GJ non-renewable inputs/GJ outputs) | (€ outputs- € inputs (excl.biomass), per dry tonne of biomass input at plant gate) | GHG<br>reduction,<br>compared<br>to<br>reference | Levelised life cycle cost, based on CAPEX and OPEX (incl. feedstock cost), expressed in relation to the output of energy carriers (€/GJ energy carriers) | Jobs in FTE along |
|----------------------|----------------------------|----------------------------------------------------------------------|------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                      | HOUSENOIDS                 | Residential wood chips boilers -<br>small scale (10-25 kW)           | 1.39 GJ/GJ | 0.044 GJ/GJ                                                           | 188 €/ton d.m.                                                                     |                                                  |                                                                                                                                                          | 3 FTE/ MWth       |
| 50                   | Services                   | Wood chip boilers-large size (50 kW)                                 | 1.24 GJ/GJ | ·                                                                     | 211 €/ton d.m.                                                                     |                                                  |                                                                                                                                                          | 3.5 FTE/ MWth     |
| omas                 | Industry                   | CHP using solid biomass > 15MW                                       | 2.79 GJ/GJ | 0.088 GJ/GJ                                                           | 198 €/ton d.m.                                                                     | 93%                                              | 30 €/GJ                                                                                                                                                  | 3.8 FTE/ MWth     |
| Forest biomass       |                            | CHP using solid biomass 0.5 - 15<br>MW                               | 1.31 GJ/GJ |                                                                       | 280 €/ton d.m.                                                                     |                                                  |                                                                                                                                                          | 3.5 FTE/ MWth     |
|                      |                            | Straw and agricultural residues for small scale local heating plants | 1.39 GJ/GJ | 0.089 GJ/GJ                                                           | 170 €/ton d.m.                                                                     | 88%                                              | . 18 €/MJ                                                                                                                                                | 3 FTE/ MWth       |
| Agricultural biomass | Inductry                   | Straw and agricultural residues for CHP > 10 MW                      | 1.31 GJ/GJ | 0.084 GJ/GJ                                                           | l <b>2</b> 53 €/ton d.m.                                                           | 92%                                              | 20 €/GJ                                                                                                                                                  | 3.8 FTE/ MWth     |
| ultura               | Utility                    | Direct co-firing coal process                                        | 1.21 GJ/GJ | 0.030 GJ/GJ                                                           | 253 €/ton d.m.                                                                     | 96%                                              | 20 €/GJ                                                                                                                                                  | 3.5 FTE/ MWth     |
| Agric                | Bioethanol 2 <sup>nd</sup> | Cellulose-EtOH                                                       | 2.44 GJ/GJ |                                                                       | 144 €/ton d.m.                                                                     |                                                  |                                                                                                                                                          | 3.5 FTE/ MWth     |
| es                   | Inductry/ Hitility         | anaerobic digestion & medium scale CHP                               | 2.00 GJ/GJ | 0.007 GJ/GJ                                                           | 197 €/ton d.m.                                                                     | 88%                                              | 28 €/GJ                                                                                                                                                  | 2 FTE/ MWth       |
| Biowastes            | IIranchort                 | anaerobic digestion + upgrading to methane                           | 1.56 GJ/GJ | 0.071 GJ/GJ                                                           | 122 €/ton d.m.                                                                     | 81%                                              | 14 €/GJ                                                                                                                                                  | 2.5 FTE/ MWth     |

### What is the national policy landscape\*?

- The following slides provide diagrams to illustrate how existing policies / measures support one or more of the following:
  - Biomass supply
  - Logistics
  - Conversion
  - Distribution
  - End use
- Policies / measures are categorised as: 1) Regulation, 2)
   Financing and 3) Information

<sup>\*</sup> Policy mapping and respective recommendations are the result of intensive review but as the field is dynamic the authors appreciate there may be missing elements.

#### **Current policy: forest**

**Biomass Supply** 

Logistics

Information

Conversion

Distribution

**End Use** 

Forest Law

Good Agricultural Practices for prevention of nitrate pollution from agricultural activities

Increasing of the value of forest products

**Biomass Heating Regulation** 

Green Fund

Feed-in tariff scheme for RES-electricity

Investment incentives law

Energy performance residential buildings

Law on income tax

Solid biofuels quality standards for heating applications

Regulations Financing

### Current policy: agriculture & dedicated crops

**Biomass Supply** 

Logistics

Conversion

Distribution

**End Use** 

**CAP: Greek Rural Development Programmes** 

Good Agricultural Practices for prevention of nitrate pollution from agricultural activities

Increasing of the value of forest products

**Biomass Heating Regulation** 

Feed-in tariff scheme for RES-electricity

Investment incentives law

Green Fund

Biofuels quota

HELIOS: RES promotion and biofuels sustainability criteria

Energy performance residential buildings

Law on income tax

Solid biofuels quality standards for heating applications

Regulations Financing

Information

#### **Current policy: wastes**

Biomass Supply

Logistics

Conversion

Distribution

End Use

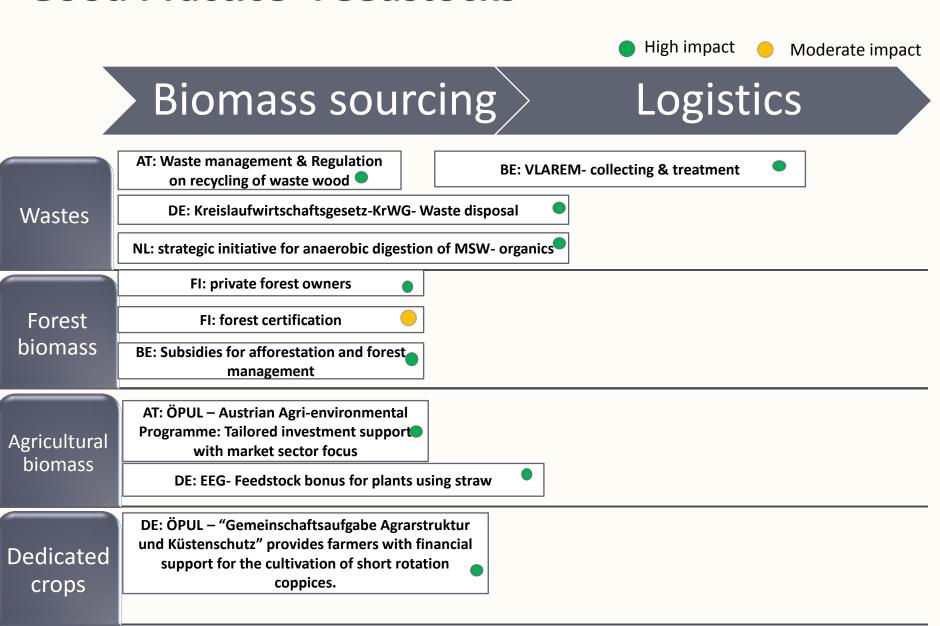
Green Fund

Biofuels quota

HELIOS: RES promotion and biofuels sustainability criteria

Energy performance residential buildings

Law on income tax


Regulations Financing Information

## What improvements can be made based on good practice\*?

- The following slides illustrate selected policies from Member States that have had significant positive impact in promoting the use of lignocellulosic biomass
- Based on this Good Practice, recommended new policies are shown (shaded boxes) to complement existing policies.

<sup>\*</sup> Policy mapping and respective recommendations are the result of intensive review but as the field is dynamic the authors appreciate there may be missing elements.

#### **Good Practice- Feedstocks**



#### **Good Practice- End use sectors** High impact Moderate impact Distribution **End Use** Conversion UK: Renewable Heat Initiatives (RHI) AT: Climate and Energy Fund-Subsidy scheme wood heating. NL: Energy Investment Allowance (EIA), tax reductions for boilers Heat ES: BIOMCASA I & II, funding for efficient use of biomass DE: repayment bonus from market program (MAP) and soft loans with low interest rates public sector bank KfW AT: Green Electricity Act & CHP Act: refines scales of applications and target specific sectors and biomass resource types and end uses. DE: Renewable Energy Sources Act 2014 - Act (EEG 2014); Market premium (in EEG § 35); Flexibility premium for CHP existing installations (EEG, § 54) UK:Renewables Obligation (RO) scheme, based on green certificates favouring certain technologies DE: Federal Immission Control Act (BImSchG) DE: Energy Tax Act (EnergieStG): It UK: Renewable Transport Fuel Obligation (RTFO) accounts for transport biofuels and certification system **Transport** FI: Act of Excise Duty on Liquid Fuels, a taxation system, in which each component biofuels of a liquid fuel is taxed separately, based on its energy content and carbon dioxide emission, meaning reduced taxation for biofuels **DE: National Bioeconomy Strategy**

Biobased products

**DE: National Bioeconomy Strategy** 

SE: Swedish Research and Innovation Strategy for a Bio-based Economy

### Recommended new policy\*: forest

**Biomass Supply** Logistics Conversion Distribution **End Use Biomass Heating Regulation** Green Fund Forest Law Good Agricultural Practices for prevention of nitrate Maintain subsidies/ Feed-in tariff scheme for RES-electricity pollution from agricultural activities loans for biomass heating & 'band' payments for specific Forest Law: Elaborate on restrictions related to Investment incentives law residual streams only sustainability (e.g. concerning de-/ re-/afforestation). Energy performance residential buildings Increasing of the value of forest products Law on income tax Regulation on recycling of waste wood Solid biofuels quality standards for heating applications Green electricity feed-in tariff regulation: introduce premiums for specific diameters cuttings; thinnings, etc. **Fixed premiums** Follow-up tariffs for existing RES-E plants Regulations Information **Financing** 

<sup>\*</sup>Shaded boxes show recommended new measures

### Recommended new policy: agriculture & dedicated crops

Information

**Financing** 

Regulations

Logistics **Biomass Supply** Conversion Distribution **End Use Biomass Heating Regulation** Green Fund CAP: Greek Rural Development Programmes Good Agricultural Practices for prevention of nitrate Biofuels quota Feed-in tariff scheme for RES-electricity pollution from agricultural activities **HELIOS: RES promotion** Investment incentives law and biofuels Standards for agricultural biomass sustainability criteria Energy performance residential buildings Increasing of the value of forest products Law on income tax Solid biofuels quality standards for heating applications Regulation on agricultural raw materials for biofuels and bioliquids Maintain subsidies/ loans for biomass heating & 'band' Green electricity feed-in tariff regulation: introduce payments for specific feedstock premium for agricultural residues residual streams only

#### Recommended new policy: wastes

Logistics **Biomass Supply** Conversion Distribution **End Use** Green Fund Standards for biowastes Biofuels quota Feed-in tariff scheme for RES-electricity **HELIOS: RES promotion** Investment incentives law and biofuels sustainability criteria Energy performance residential buildings Law on income tax Maintain subsidies/ **Biomethane injection** loans for biomass heating & 'band' payments for specific biowaste streams Green electricity feed-in tariff regulation: introduce only feedstock premium for biowastes

Regulations Financing Information

#### **Conclusions**

- Greek regions have relatively high biomass availability. The national lignocellulosic biomass potential is around 6.24m dry tonnes / year (excluding primary forest harvest), with forest, agriculture and waste sources all significant.
- The existing policy framework forms a foundation for future support measures to be introduced.
- The study has recommended a number of new policies (and refinements to existing policies) that are based on Good Practice and can further facilitate mobilisation of lignocellulosic biomass for a bio based economy by 2030.

#### **Further reading**

- www.s2biom.eu
- Deliverable 1.8: A spatial data base on sustainable biomass cost-supply of lignocellulosic biomass in Europe methods & data sources. From: Dees, M., B. Elbersen, J. Fitzgerald,, M. Vis, P. Anttila, N. Forsell, J. Ramirez-Almeyda, D. García Galindo, B. Glavonjic, I. Staritsky, H. Verkerk, R. Prinz, A. Monti, S.Leduc, M. Höhl, P. Datta, R. Schrijver, M. Lindner, J. Lesschen, K. Diepen & J. Laitila (2016): <a href="http://www.s2biom.eu/en/publications-reports/s2biom.html">http://www.s2biom.eu/en/publications-reports/s2biom.html</a>
- www.biomass-tools.eu click in main menu on 'Biomass chain data' ---> 'Biomass characteristics'
- www.biomass-tools.eu click in main menu on 'Data downloads'



#### **Project coordinator**



#### **Project partners**

#### Scientific coordinator

#### Imperial College London





























































Maps: DLO Altera, 2016





